Topic Z4 Complex numbers (Pre-TT B) [54] MARKSCHEME

1.

Uses De Moivre's theorem	AO3.1a	M1	$(\cos\theta + i\sin\theta)^5 = \frac{1}{\sqrt{2}}(1-i)$
Equates real and imaginary parts and obtains two equations	AO1.1a	A1	$\Rightarrow \cos 5\theta + i \sin 5\theta = \frac{1}{\sqrt{2}} (1 - i)$
Deduces that the smallest possible value of 5θ is $\frac{7\pi}{4}$ FT from 'their' equations provided M1 has been awarded	AO2.2a	A1F	$\cos 5\theta = \frac{1}{\sqrt{2}} \sin 5\theta = -\frac{1}{\sqrt{2}}$ $(5\theta =) \frac{7\pi}{4}$
Obtains the smallest possible value of θ from fully correct reasoning FT from 'their' 5θ provided M1 has been awarded	AO1.1b	A1F	$\theta = \frac{7\pi}{20}$
Total		4	

2.

	Commences an argument by correctly expanding brackets and simplifying final term to 1/16	AO1.1a	M1	$(1 - \frac{1}{4}e^{2i\theta})(1 - \frac{1}{4}e^{-2i\theta})$ $= 1 - \frac{1}{4}e^{2i\theta} - \frac{1}{4}e^{-2i\theta} + \frac{1}{16}$
	Substitutes correctly for both $e^{2i\theta}$ and $e^{-2i\theta}$ in terms of $\cos 2\theta$ and $\sin 2\theta$ (seen anywhere in solution)	AO1.1b	B1	$= \frac{17}{16} - \frac{1}{4}(\cos 2\theta + i \sin 2\theta) - \frac{1}{4}(\cos 2\theta - i \sin 2\theta)$ $= \frac{17}{16} - \frac{1}{2}\cos 2\theta$ $= \frac{1}{16}(17 - 8\cos 2\theta)$
	Completes argument and reaches stated result by collecting terms and simplifying correctly, no errors in working seen AG	AO2.1	R1	AG
`	Identifies series as a geometric series and states first term and common ratio correctly	AO1.1b	A1	Geometric series with first term $r = e^{2i\theta}$ and common ratio $a = \frac{1}{4}e^{2i\theta}$
	States and uses sum to infinity formula correctly FT incorrect values for first term and common ratio	AO1.1b	A1F	$S_{\infty} = \frac{a}{1-r} = \frac{e^{2i\theta}}{1-\frac{1}{4}e^{2i\theta}}$

			1	
(c)	Deduces that the series in part (c) is related to the real part of the series in part (b)	AO2.2a	R1	Series stated = real part of the series $e^{2i\theta} + \frac{1}{4}e^{4i\theta} + \frac{1}{16}e^{8i\theta} + \frac{1}{64}e^{8i\theta} + \dots$
	Selects an appropriate method by using the result in part (b) and multiplying appropriately to realise the denominator	AO3.1a	M1	Using result from previous part $\frac{e^{2i\theta}}{1-\frac{1}{4}e^{2i\theta}} = \frac{e^{2i\theta}}{(1-\frac{1}{4}e^{2i\theta})} \times \frac{(1-\frac{1}{4}e^{-2i\theta})}{(1-\frac{1}{4}e^{-2i\theta})}$
	Substitutes to obtain an expression with cosines and sines only – using part (a)	AO1.1b	A1F	$= \frac{e^{2i\theta} - \frac{1}{4}}{(1 - \frac{1}{4}e^{2i\theta})(1 - \frac{1}{4}e^{-2i\theta})}$
	FT incorrect sum to infinity provided M1 has been awarded			$\frac{\cos 2\theta - \frac{1}{4} + i\sin 2\theta}{\frac{1}{16}(17 - 8\cos 2\theta)}$
	Identifies the real part and correctly completes the argument to reach the stated result. Only award for an error-free fully correct solution	AO2.1	R1	Real part = $\frac{\cos 2\theta - \frac{1}{4}}{\frac{1}{16}(17 - 8\cos 2\theta)} = \frac{16\cos 2\theta - 4}{17 - 8\cos 2\theta}$
(d)	Identifies the imaginary part and states the correct expression	AO2.2a	R1	Required series = imaginary part of the given series hence
				$\frac{\sin 2\theta}{\frac{1}{16}(17 - 8\cos 2\theta)} = \frac{16\sin 2\theta}{17 - 8\cos 2\theta}$
	Total		10	

3.

٠.				
(i)	$1, e^{\frac{2}{3}\pi i}, e^{\frac{4}{3}\pi i}, e^{\frac{6}{3}\pi i}, e^{\frac{8}{3}\pi i}$ oe polar form	M1	Attempt roots	e.g. gives roots in an incorrect form.
		A1 [2]		
(ii)	$z^{5} = (z+1)^{5} = z^{5} + 5z^{4} + 10z^{3} + 10z^{2} + 5z + 1$	M1		
	$\Leftrightarrow 5z^4 + 10z^3 + 10z^2 + 5z + 1 = 0$	A1		
	so $z+1=ze^{\frac{2k}{5}\pi i}$, $k=0,1,2,3,4$	M1		
	k = 0 no solution	B1	soi	
	$1 = z \left(e^{\frac{2k}{3}\pi i} - 1 \right)$			
	$z = \frac{1}{e^{\frac{2k}{3}\pi i} - 1}, k = 1, 2, 3, 4$	A1	If B0, then give A1 ft for correct solution plus $k = 0$	
		[5]		

4.			
(i)	$\cos 6\theta = 0 \implies 6\theta = k \times \frac{1}{2}\pi$	M1	For multiples of $\frac{1}{2}\pi$ seen or implied
	$\Rightarrow \theta = \frac{1}{12} \pi \{1, 3, 5, 7, 9, 11\}$	A1	A1 for any 3 correct
	12 11 11 11 11 11	A1 3	A1 for the rest, and no extras in
			$0 < \theta < \pi$
(ii)	METHOD 1		2
	$Re(c+is)^6 = \cos 6\theta = c^6 - 15c^4s^2 + 15c^2s^4 - s^6$	M1	For expanding $(c+is)^6$
	$Re(c+1s)^{\circ} = \cos \theta = c^{\circ} - 15c^{\circ}s^{\circ} + 15c^{\circ}s^{\circ} - s^{\circ}$	1411	at least 4 terms and 2 binomial
		A1	coefficients needed For 4 correct terms
	$\cos 6\theta = c^6 - 15c^4(1 - c^2) + 15c^2(1 - c^2)^2 - (1 - c^2)^3$	M1	For using $s^2 = 1 - c^2$
	$\cos 0\theta = c - 13c (1 - c) + 13c (1 - c) - (1 - c)$	IVII	For using $s = 1 - c$
	\Rightarrow cos $6\theta = 32c^6 - 48c^4 + 18c^2 - 1$	A1	For correct expression for $\cos 6\theta$
	\Rightarrow cos $6\theta = (2c^2 - 1)(16c^4 - 16c^2 + 1)$	A1 5	For correct result AG
	()()		(may be written down from
	METHOD 2		correct cos 6θ)
	METHOD 2		-
	$Re(c+is)^3 = \cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$	M1	For expanding $(c+is)^3$
	Ke(t+15) - cos 30 - cos 0 - 3 cos 0 sin 0		at least 2 terms and 1 binomial coefficient needed
		A1	For 2 correct terms
	$\Rightarrow \cos 6\theta = \cos 2\theta \left(\cos^2 2\theta - 3\sin^2 2\theta\right)$	M1	For replacing θ by 2θ
	,		Torreplacing 0 by 20
	$\Rightarrow \cos 6\theta = \left(2\cos^2\theta - 1\right)\left(4\left(2\cos^2\theta - 1\right)^2 - 3\right)$	A1	For correct expression in $\cos \theta$ (unsimplified)
	$\Rightarrow \cos 6\theta = \left(2c^2 - 1\right)\left(16c^4 - 16c^2 + 1\right)$	A1	For correct result AG
(iii)	METHOD 1		
	$\cos 6\theta = 0$	M1	For putting $\cos 6\theta = 0$
	\Rightarrow 6 roots of $\cos 6\theta = 0$ satisfy	A1	For association of roots with quartic and
	$16c^4 - 16c^2 + 1 = 0$ and $2c^2 - 1 = 0$		quadratic
	But $\theta = \frac{1}{4}\pi, \frac{3}{4}\pi$ satisfy $2c^2 - 1 = 0$	B1	For correct association of roots with quadratic
	EITHER Product of 4 roots OR $c = \pm \frac{1}{2} \sqrt{2 \pm \sqrt{3}}$	M1	For using product of 4 roots
	EITHER Product of 4 foots OR $c = \pm \frac{1}{2}\sqrt{2 \pm \sqrt{3}}$		OR for solving quartic
	$\Rightarrow \cos \frac{1}{12} \pi \cos \frac{5}{12} \pi \cos \frac{7}{12} \pi \cos \frac{11}{12} \pi = \frac{1}{16}$	A1 5	For correct value (may follow A0 and
	METHOD		B0)
	METHOD 2	241	F " (0.0
	$\cos \theta = 0$	M1	For putting $\cos 6\theta = 0$
	$\Rightarrow 6 \text{ roots of } \cos 6\theta = 0 \text{ satisfy}$ $32c^6 - 48c^4 + 18c^2 - 1 = 0$	A1	For association of roots with sextic
	$32c^{2} - 48c^{2} + 18c^{2} - 1 = 0$ Product of 6 roots \Rightarrow	M1	For using product of 6 roots
	$\cos \frac{1}{12}\pi \cdot \frac{1}{\sqrt{5}} \cdot \cos \frac{5}{12}\pi \cos \frac{7}{12}\pi \cdot \frac{-1}{\sqrt{5}} \cdot \cos \frac{11}{12}\pi = -\frac{1}{32}$	B1	For using $\cos\left\{\frac{3}{12}\pi, \frac{9}{12}\pi\right\} = \left\{\frac{1}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right\}$
	$\cos\frac{1}{12}\pi\cos\frac{5}{12}\pi\cos\frac{7}{12}\pi\cos\frac{11}{12}\pi = \frac{1}{16}$	A1	For correct value
	12" 203 12" 203 12" 16		1 of coffect value
		13	

(i) EITHER $1 + \omega + \omega^2$ = sum of roots of $(z^3 - 1 = 0) = 0$

M1For result shown by any correct method AG

 $OR \quad \omega^3 = 1 \Rightarrow (\omega - 1)(\omega^2 + \omega + 1) = 0$ \Rightarrow 1 + ω + ω ² = 0 (for $\omega \neq 1$)

OR sum of G.P.

$$1 + \omega + \omega^2 = \frac{1 - \omega^3}{1 - \omega} \left(= \frac{0}{1 - \omega} \right) = 0$$

OR

shown on Argand diagram or explained in terms of

OR

 $1 + \operatorname{cis} \frac{2}{3} \pi + \operatorname{cis} \frac{4}{3} \pi = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i \right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) = 0$

Multiplication by $\omega \Rightarrow$ rotation through $\frac{2}{3}\pi$ \circlearrowleft

For correct interpretation of \times by ω B1(allow 120° and omission of, or error in, (5)

 $z_1 - z_2 = CA$, $z_2 - z_2 = BC$

For identification of vectors soi B1 (ignore direction errors)

 \rightarrow BC rotates through $\frac{2}{3}\pi$ to direction of \overrightarrow{CA}

For linking BC and CA by rotation of $\frac{2}{3}\pi$ OR ω M1

 ΔABC has BC = CA, hence result

M1

A1

A1 For stating equal magnitudes \Rightarrow AG For using $1 + \omega + \omega^2 = 0$ in (ii)

(iii) (ii) $\Rightarrow z_1 + \omega z_2 - (1 + \omega)z_3 = 0$ $1+\omega+\omega^2=0 \Rightarrow z_1+\omega z_2+\omega^2 z_3=0$

A1 For obtaining AG

8

6.

(i) $\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$

B1

M1

z may be used for $e^{i\theta}$ throughout

For expression for $sin\theta$ seen or implied

For expanding $\left(e^{i\theta} - e^{-i\theta}\right)^{0}$

 $\sin^6 \theta =$

At least 4 terms and 3 binomial coefficients required.

 $-\frac{1}{64} \left(e^{6i\theta} - 6e^{4i\theta} + 15e^{2i\theta} - 20 + 15e^{-2i\theta} - 6e^{-4i\theta} + e^{-6i\theta} \right)$

For correct expansion. Allow $\frac{\pm(i)}{64}(\cdots)$

 $= -\frac{1}{64} (2\cos 6\theta - 12\cos 4\theta + 30\cos 2\theta - 20)$ M1

For grouping terms and using multiple angles

 $\sin^6 \theta = -\frac{1}{32} (\cos 6\theta - 6\cos 4\theta + 15\cos 2\theta - 10)$ A1 5

For answer obtained correctly AG

 $\cos^6 \theta = OR \sin^6 \left(\frac{1}{2}\pi - \theta\right) =$ (ii)

M1

For substituting $(\frac{1}{2}\pi - \theta)$ for θ throughout

 $-\frac{1}{32}(\cos(3\pi-6\theta)-6\cos(2\pi-4\theta)+15\cos(\pi-2\theta)-10)$

For correct unsimplified expression

 $\cos^6\theta = \frac{1}{32} \Big(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10\Big) \quad A1 \quad \textbf{3}$

For correct expression with $\cos n\theta$ terms AEF

 $\int_{0}^{\frac{1}{4}\pi} \frac{1}{32} \left(-2\cos 6\theta - 30\cos 2\theta\right) d\theta$ (iii)

B1√

For correct integral. f.t. from $\sin^6 \theta - \cos^6 \theta$

 $=-\frac{1}{16}\left[\frac{1}{6}\sin 6\theta + \frac{15}{2}\sin 2\theta\right]_{0}^{\frac{1}{4}\pi}$

M1

For integrating $\cos n\theta$, $\sin n\theta$ or $e^{in\theta}$ For correct integration. f.t. from integrand A1√

A1 4 For correct answer WWW

12