Centres of mass of standard shapes

Starter

1. (Review of last lesson)

A light rod of length $1.4\,\mathrm{m}$ has masses $1\,\mathrm{kg}$ and $5\,\mathrm{kg}$ placed at its ends. Where should a $2\,\mathrm{kg}$ mass be placed so that the centre of mass is $0.275\,\mathrm{m}$ from the $5\,\mathrm{kg}$ mass?

Working: Let x be the distance of the 2 kg mass from the 5 kg mass.

() about the 5 kg mass:

$$(1+2+5) \times 0.275 = 1 \times 1.4 + 2 \times x$$

$$2.2 = 1.4 + 2x$$

$$0.132 = 0.6m$$

$$m = \frac{11}{50} = 0.22$$

The $2\ kg$ mass should be placed $0.4\ m$ from the $5\ kg$ mass.

2. (Review of last lesson)

Objects of mass m, 2m, 3m and 4m are placed at the points (4, 3), (1, 1), (3, 0) and (2, -2) respectively. Find the centre of mass of the set of points.

$$10m\begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = m\begin{pmatrix} 4 \\ 3 \end{pmatrix} + 2m\begin{pmatrix} 1 \\ 1 \end{pmatrix} + 3m\begin{pmatrix} 3 \\ 0 \end{pmatrix} + 4m\begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

$$10\begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = \begin{pmatrix} 23 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = \begin{pmatrix} 2.3 \\ -0.3 \end{pmatrix}$$

The centre of mass is at $\begin{pmatrix} 2.3 \\ -0.3 \end{pmatrix}$ m.

E.g. 1 Find the coordinates of the centre of mass of a uniform triangular lamina with vertices at A(4,4), B(1,1) and C(5,1).

Working: CoM:
$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) = \left(\frac{4 + 1 + 5}{3}, \frac{5 + 1 + 1}{3}\right)$$

The centre of mass, G, is at $\left(\frac{10}{3}, 2\right)$

www.mathspanda.com

E.g. 2 A wire of length 10 cm is bent into the form of an arc whose radius is 4 cm. Find the distance of the centre of the mass to the wire.

Using
$$s = r\theta$$
:

$$\theta = \frac{10}{4} = \frac{5}{2}^{c}$$

Remember to halve the angle at the centre

Using
$$OG = \frac{r \sin \alpha}{\alpha}$$

Using
$$OG = \frac{r \sin \alpha}{\alpha}$$
: $OG = \frac{4 \times \sin \frac{5}{4}}{\frac{5}{4}} = \frac{16}{5} \sin \frac{5}{4} \approx 3.03675$

Distance to wire =
$$4 - = \frac{16}{5} \sin \frac{5}{4} \approx 0.963$$

The distance of the centre of the mass to the wire is 0.963 cm.

E.g. 3 A sector of a circle has radius 8 cm and angle 60° . Find the distance of the centre of the mass to the centre of the circle.

Working:

Remember to use radians and halve the angle at the centre

Using
$$OG = \frac{2r \sin \alpha}{3\alpha}$$

Using
$$OG = \frac{2r \sin \alpha}{3\alpha}$$
: $OG = \frac{2 \times 8 \times \sin \frac{\pi}{6}}{3 \times \frac{\pi}{6}} = \frac{16}{\pi} \text{ cm}$

The distance of the centre of the mass to the centre of the circle is $\frac{16}{}$ cm.

Video:

CoM (triangular laminas)

Video:

CoM (sectors and semi-circles)

Video (password needed):

Centre of mass of a uniform lamina

Video (password needed):

Suspended objects

Solutions to Starter and E.g.s

Exercise

p114 5B Qu 1-9