Areas between Curves

Starter

1. (Review of last lesson)

The surface area of a sphere, *S*, is expanding at a rate of 9 cm² s⁻¹. Find the exact rate of increase of the radius, *r*, of the sphere when radius is 7 cm.

- 2. Find the area of the shaded part:
 - (a)

Notes

Success Criteria — area between two curves

1. Find the *x*-coordinates of the points of intersection, say x = a and x = b.

2. Area =
$$\left| \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx \right| = \left| \int_{a}^{b} (f(x) - g(x))dx \right|$$

Does this formula still work when part of the area is under the x-axis?

Yes

N.B. It is a good idea to sketch the curves to get a visual idea of the area being calculated.

www.mathspanda.com

E.g. 1 Find the area between:

- (a)
- the curve $y = x^3$ and the line y = 4xthe curves $y = \sin x + 1$ and $y = \cos x + 1$ for $0 \le x \le 2\pi$. (b)

Working: (a) To find points of intersection, solve
$$x^3 = 4x$$

 $\therefore x^3 - 4x = 0 \Rightarrow x(x^2 - 4) = 0$
 $x(x - 2)(x + 2) = 0$
 $\Rightarrow x = -2, x = 0 \text{ and } x = 2$
The line $y = 4x$ is above the curve $y = x^3$.
Since areas are symmetrical, find the area
from $x = 0$ to $x = 2$ and then double it.
 $\therefore \text{ Area} = 2\left(\int_0^2 4x dx - \int_0^2 x^3 dx\right)$
 $= 2\left[2x^2 - \frac{1}{4}x^4\right]_0^2$
N.B. The integrals can be combined since the limits are the same.

$$= 2\left(2 \times 2^2 - \frac{1}{4} \times 2^4 - 0\right)$$

Area between the curves = 8

E.g. 2 The area between the graphs $y = x^2$ and y = ax is 36, where *a* is a constant and a > 0. Find the value of *a*.

Video A:	Area between 2 curves
Video B:	Area between 2 curves

Solutions to Starter and E.g.s

Exercise

p274 12F Qu 1i, 3-6, 9, 11 (10)

Summary

Area between two curves

1. Find the *x*-coordinates of the points of intersection, say x = a and x = b.

2. Area =
$$\left| \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx \right| = \left| \int_{a}^{b} (f(x) - g(x))dx \right|$$