Calculus with Vectors

Starter

From AS level:

For motion with variable acceleration:		Displacement ↔ Velocity ↔ Acceleration	
Differentiation	S	$s = \frac{dx}{dt}$	$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$
Integration	а	v = a dt	s = vdt
		. J	J

N.B. Some questions use *x* for displacement when there is variable acceleration.

1. (Review of AS material)

A particle's velocity is given by $v = t^2 - 7t + 10$ for $0 \le t \le 4$. Find:

- (a) its acceleration when t = 3.
- (b) the displacement for $0 \le t \le 4$ and
- (c) the total distance travelled for $0 \le t \le 4$.
- 2. (Review of A2 material) The path of a particle is given by the parametric equations x = t + 3, $y = 2t^2 5t + 8$. Find the cartesian equation of the path.

Notes

In terms of vectors: F = ma becomes $\mathbf{F} = m\mathbf{a}$

Differentiatio	on s	$\mathbf{v} = \frac{d\mathbf{s}}{dt}$	$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{s}}{dt^2}$
	$\mathbf{s} = f(t)\mathbf{i} + g(t)\mathbf{j}$	$\mathbf{v} = f'(t)\mathbf{i} + g'(t)\mathbf{j}$	$\mathbf{a} = f''(t)\mathbf{i} + g''(t)\mathbf{j}$
Integration	a	$\mathbf{v} = \int \mathbf{a} dt$	$\mathbf{s} = \int \mathbf{v} dt$
	$\mathbf{a} = f(t)\mathbf{i} + g(t)\mathbf{j}$	$\mathbf{v} = \int f(t)\mathbf{i} + \int g(t)\mathbf{j}$	$\mathbf{s} = \iint f(t)\mathbf{i} + \iint g(t)\mathbf{j}$

- *E.g.* 1 A particle is moving in a vertical plane so that at time *t* seconds it has velocity *v* m/s where $\mathbf{v} = (8 + 2t)\mathbf{i} + (t^3 6t)\mathbf{j}$. When t = 2, the particle has position vector $(10\mathbf{i} + 3\mathbf{j})$ m with respect to a fixed origin O.
 - (a) Find the acceleration, a, of the particle at time t.
 - (b) Find the position vector of the particle when t = 4.
 - (c) Find the value of t for which the particle is directly above O.
 - *N.B.* "Directly above O" means the **i** component is zero.

Working: (a)
$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = 2\mathbf{i} + (3t^2 - 6)\mathbf{j} \text{ m/s}^2.$$

(b) $\mathbf{s} = \int (8 + 2t)\mathbf{i} + (t^3 - 6t)\mathbf{j}dt$
 $\mathbf{s} = (8t + t^2)\mathbf{i} + (\frac{1}{4}t^4 - 3t^2)\mathbf{j} + \mathbf{c}$
When $t = 2$, $\mathbf{s} = (10\mathbf{i} + 3\mathbf{j})$

Page 1 of 2

www.mathspanda.com

$$10\mathbf{i} + 3\mathbf{j} = (8 \times 2 + 2^{2})\mathbf{i} + (\frac{1}{4} \times 2^{4} - 3 \times 2^{2})\mathbf{j} + \mathbf{c}$$

$$\mathbf{c} = -10\mathbf{i} + 11\mathbf{j}$$

$$\therefore \mathbf{s} = (t^{2} + 8t - 10)\mathbf{i} + (\frac{1}{4}t^{4} - 3t^{2} + 11)\mathbf{j}$$

When $t = 4$, $\mathbf{s} = (4^{2} + 8 \times 4 - 20)\mathbf{i} + (\frac{1}{4} \times 4^{4} - 3 \times 4^{2} + 11)\mathbf{j}$
The position vector when $t = 4$ is $38\mathbf{i} + 27\mathbf{j}$.

(c) Solve
$$t^2 + 8t - 10 = 0$$

Since $t > 0$, $t = -4 + \sqrt{26} = 1.10$ s (3 s.f.)

E.g. 2 A body of mass 3 kg moves under the action of a force, F, where

 $\mathbf{F} = (2t+1)\mathbf{i} + (11-6t^2)\mathbf{j}\mathbf{m}/\mathbf{s}^2$. Initially the body has velocity $(4\mathbf{i} + 9\mathbf{j})$ m/s.

- (a) Find the velocity of the body after 2 seconds.
- (b) Find the speed and angle of direction of the body after 5 seconds.
- **N.B.** For (b), the direction of motion is given by the velocity and its angle is is the angle it makes with the positive *x*-axis.

Video: <u>Variable acceleration with vectors</u> Video: <u>Calculus in 2-D kinematics example</u>

Solutions to Starter and E.g.s

Exercise

p438 19C Qu 1i, 2i, 3i, 4-11

Summary

 $F = ma \text{ becomes } \mathbf{F} = m\mathbf{a}$ $Differentiation \quad \mathbf{s} \qquad \mathbf{v} = \frac{d\mathbf{s}}{dt} \qquad \mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{s}}{dt^2}$ $\mathbf{s} = f(t)\mathbf{i} + g(t)\mathbf{j} \qquad \mathbf{v} = f'(t)\mathbf{i} + g'(t)\mathbf{j} \qquad \mathbf{a} = f''(t)\mathbf{i} + g''(t)\mathbf{j}$ $Integration \quad \mathbf{a} \qquad \mathbf{v} = \int \mathbf{a}dt \qquad \mathbf{s} = \int \mathbf{v}dt$ $\mathbf{a} = f(t)\mathbf{i} + g(t)\mathbf{j} \qquad \mathbf{v} = \int f(t)\mathbf{i} + \int g(t)\mathbf{j} \qquad \mathbf{s} = \int \int f(t)\mathbf{i} + \int \int g(t)\mathbf{j}$