Introduction to Differential Equations

Starter

1. (Review of AS material)

A curve passes through the point (2, -5) and satisfies $\frac{dy}{dx} = 6x^2 - 1$. Find f(x).

2. (Review of AS material)

Given that the gradient function of f(x) is $15x^2 - 6x + 4$ and f(1) = 0, find f(x).

Notes

From the starter questions, it can be seen that we have already solved differential equations when we were finding the value of the constant, *c*, in AS maths.

General solution vs. particular solution

General solution: find y = f(x) + cIn the example above $y = 2x^3 - x + c$ is the *general solution*

Particular solution: find the particular value for c so that y is a function without unknowns In the example above $y = 2x^3 - x - 19$ is the *particular solution*

E.g. 1 Find the general solution of the differential equation $\frac{dy}{dx} = \sin 3x - e^{6x} + \sec^2 x$.

E.g. 2 Find the particular solution of the differential equation $\frac{dy}{dx} = \sqrt{5x+1}$ given that when x = 7, y = 8.

Video: Finding the constant term

Solutions to Starter and E.g.s

Exercise p284 13A Qu 1i, 2i

Summary

The *general solution* includes the constant of integration, *c*.

The *particular solution* has "*c*" replaced by its actual value (calculated from a given boundary condition).