Topic X8 Mechanics (Post-TT B) [40] MARKSCHEME 1. | (i) | | M1 | | For resolving forces vertically | |-------|--------------------------------------|------|---|--| | | 15 x 0.28 and 11x 0.8 | A1 | | Allow use of $\square = 16.3$ and $\square = 53.1$ | | | Y= 15x0.28 + 11x0.8 - 13 | A1ft | | Ft cv(15 x 0.28 and 11x 0.8) | | | Component is zero
AG | A1 | 4 | $\mathbf{SR} \ 15\sin\Box + 11\sin\Box - 13 = 0 \text{ gets } \mathbf{M}1\mathbf{A}0\mathbf{A}1\mathbf{f}t\mathbf{A}0$ | | (ii) | | M1 | | For resolving forces horizontally | | | $X = 15 \times 0.96 - 11 \times 0.6$ | A1 | | Allow use of $\square = 16.3$ and $\square = 53.1$ | | | Magnitude is 7.8N | A1 | 3 | Accept 7.79, -7.8 | | (iii) | Direction is that of the | B1 | 1 | Do not allow horizontal, 90° from vertical. | | | (+ve) x -axis | | | Do not award if $\square = 16.3$ and $\square = 53.1$ | | | | | | have been used. | 2. | (i) | $F = 12\cos 15^{\circ}$ | M1 | | Resolve horizontally (condone sin) | |-------|---------------------------------------|------|------|---| | | Frictional component is 11.6 N | A1 | [2] | _ | | (ii) | $N + 12\sin 15^{\circ} = 2g$ | M1 | | Resolve vert 3 forces (accept | | | Normal component is 16.5 N | A1 | [2] | cos)
AG | | (iii) | $11.591 = \mu 16.494$ | M1 | | For using $\operatorname{cv} F = \mu \operatorname{cv} N$ | | | Coefficient is 0.7(0) | A1ft | [2] | Ft cv <i>F</i> to 2 sf. $\mu = 0.7027$ | | (iv) | N=2g | B1 | | | | | $F = 19.6 \times 0.7027$ | M1 | | | | | | M1 | | For using Newton's second law | | | 20 - 13.773 = 2a | A1ft | | cv Tractive - cv Friction (e.g. | | | 2 | | | from (i)) | | | Acceleration is 3.11 ms ⁻² | A1 | [5] | Accept either 3.11 or 3.12 only | | | MISREAD (omits "horizontal") | MR-1 | | All A and B marks now ft. | | | | | | Subtract "MR-1" from initial B1 | | | | | | or final A1 (not A1ft in main | | | $N = 2g - 20\sin 15$ | B1ft | | scheme). | | | $F = 0.7027 \times 14.4$ | M1 | | Equals 14.42 | | | | M1 | | Equals 10.1 | | | $20\cos 15 - 10.14 = 2a$ | A1ft | F +2 | For using Newton's second law | | | Acceleration is 4.59 ms ⁻² | A1ft | [4] | cv Tractive - cv Friction | | | | | | Accept 4.59, 4.6(0) | 3. | Uses correct forces to form a moment equation (PI) | AO1.1a | M1 | Take moments about C :
$Mg \times 0.8 = 0.7 \times 24$ | |--|--------|----|---| | Obtains correct value | AO1.1b | A1 | <i>M</i> = 21 | | Total | | 2 | | 4. | 6 ia | Perp = 10cos20 (= 9.3967 or 9.4)
// = 10sin20 (= 3.4202) | B1
B1
[2] | Includes g, MR -1 in part (i). Accept -ve values. | |------|--|--------------------------------|---| | ь | $\mu = 10\sin 20/10\cos 20 = \tan 20 \ (= 3.42/9.4)$
$\mu = 0.364 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | M1
A1
[2] | Must use ${}^{ }F_{i}^{ } = \mu_{i}^{ }R_{i}^{ }$
Accept after inclusion of g twice | | ii | No misread, and resolving of 10 and T
required
$R = 10\cos 20 + T\cos 45$
$F = T\cos 45 - 10\sin 20$ or $T\cos 45 = \mu R + 10\sin 20$
$T\cos 45 - 3.42 = 0.364(9.4 + T\cos 45)$ | M1*
A1
M1*
A1
D*M1 | 3 term equation perp plane, 2 unknowns 9.4 + 0.707T (accept 9.4+.71T) 3 term equation // plane, 2 unknowns 0.707T - 3.42 (accept 0.71T - 3.4) Substitutes for F and R in F=0.364R | | | 0.707T - 3.42 = 3.42 + 0.257T
0.45T = 6.84
T = 15.2 N (15.209) | A1
[7] | Award final A1 only for $T = 149$ N after using 10g for weight | 5. | (a) | Obtains correct horizontal component of the initial velocity | AO1.1b | B1 | 2.5U = 40
U = 16 | |-----|--|--------|-----|---| | | Forms equation to find vertical component of initial velocity | AO3.3 | M1 | $-10 = 2.5V - 0.5 \times 9.81 \times 2.5^{2}$ | | | Obtains correct vertical component of initial velocity | AO1.1b | A1 | V = 8.2625 | | | Forms equation for vertical component of velocity at height 3 using 'their' derived values for ${\cal U}$ and ${\cal V}$ | AO3.4 | M1 | $v_y^2 = 8.2625^2 + 2 \times (-9.81) \times 3$ | | | Obtains correct component of velocity | AO1.1b | A1 | $v_y = 3.067$ | | | Correct final speed with units, correct for 'their' U and v_y | AO3.2a | A1F | $v = \sqrt{16^2 + 3.067^2} = 16.3 \mathrm{m s^{-1}}$ | | | FT applies only if both M1 marks have been awarded | | | | | b) | States 'their' value of horizontal component of the initial velocity from part (a) | AO3.4 | A1F | 16 m s ⁻¹ | |------------|---|--------|-----|---| | (c) | Explains that horizontal velocity has been assumed to be constant in their model and that this is not likely to be true, with valid reasoning | AO3.5b | E1 | It was assumed that there were
no resistance forces acting on
the ball which is unlikely to be
true in reality. The horizontal
speed of the ball is likely to
vary air resistance would slow
the ball down, wind might speed
the ball up | | | Total | | 8 | |