Parametric Equations

Starter

(Review of last lesson) Decide whether the curve $y = x^2 - \frac{1}{x}$ has a point of inflexion. 1.

Working:
$$y = x^2 - \frac{1}{x} = x^2 - x^{-1}$$

 $\frac{dy}{dx} = 2x + x^{-2}$
 $\frac{d^2y}{dx^2} = 2 - 2x^{-3}$

A possible Pol occurs when
$$\frac{d^2y}{dx^2} = 0$$
: $2 - 2x^{-3} = 0$

$$2 = \frac{2}{x^3} \implies x^3 = 1 \implies x = 1 \text{ is a possible Pol}$$

Now find the gradient change either side of the possible Pol.

When
$$x = 0.9$$
,
$$\frac{dy}{dx} = 2 \times 0.9 + \frac{1}{0.9^2} > 0$$

When $x = 1.1$,
$$\frac{dy}{dx} = 2 \times 1.1 + \frac{1}{1.1^2} > 0$$

Since the gradient is the same sign, x = 1 is a point of inflexion

2. (Review of last lesson)

If $f(x) = \frac{1}{16}x^4 + \frac{3}{4}x^3 - \frac{21}{8}x^2 - 6x + 20$, identify the range of values of x for which the graph of y = f(x) is concave and convex. Express your answers in set notation.

Working:
$$f'(x) = \frac{1}{4}x^3 + \frac{9}{4}x^2 - \frac{21}{4}x - 6$$
$$f''(x) = \frac{3}{4}x^2 + \frac{9}{2}x - \frac{21}{4}$$

A curve is convex when f''(x) > 0: $\frac{3}{4}x^2 + \frac{9}{2}x - \frac{21}{4} > 0$

Multiply by 4, divide by 3:
$$x^2 + 6x - 7 > 0$$

Solving $x^2 + 6x - 7 = 0$ $(x + 7)(x - 1) = 0$
 $x = -7$ and $x = 1$

The curve $x^2 + 6x - 7 = 0$ is concave-up

$$> 0 \Rightarrow above the x-axis$$

The curve is convex when $\{x : x < -7\} \cup \{x : x > 1\}$. It follows that the curve is concave when $\{x : x > -7\} \cap \{x : x < 1\}$.

www.mathspanda.com

3. Find an expression involving y and x but no t given that:

(a)
$$x = 3t$$
 and $y = \frac{6}{t}$

(b)
$$x = 4t^2 \text{ and } y = 8t$$

Working: (a) Substitute
$$t = \frac{x}{3}$$
 into $y = \frac{6}{t}$: $y = \frac{6}{\left(\frac{x}{3}\right)} \Rightarrow y = \frac{18}{x}$

(b) Substitute
$$t = \frac{y}{8}$$
 into $x = 4t^2$: $x = 4\left(\frac{y}{8}\right)^2 \Rightarrow y^2 = 16x$

E.g. 1 Express $x = 3 \cos t$, $y = 4 \sin t$ in cartesian form.

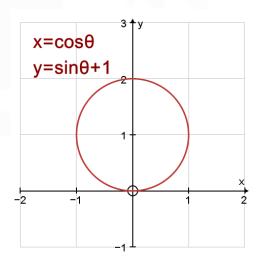
Working:
$$\cos^2 t + \sin^2 t = 1$$

 $\operatorname{so}\left(\frac{x}{3}\right)^2 + \left(\frac{y}{4}\right)^2 = 1$
 $\frac{x^2}{9} + \frac{y^2}{16} = 1$
 $16x^2 + 9y^2 = 144$

E.g. 2 Sketch the graph given by $x = \cos \theta$ and $y = \sin \theta + 1$.

ı	θ	0	π/2	π	3π/2	2π
	x	1	0	-1	0	1
	у	1	2	1	0	1

Working: Circle, centre (0, 1) and radius 1



www.mathspanda.com

E.g. 3 Transform these parametric curves into cartesian form:

(a)
$$x = \frac{5}{2-t}$$
, $y = \frac{4}{2-t}$
(b) $x = \cos t$, $y = 4\sin 2t \sin t$

Working: (a) From
$$x = \frac{5}{2-t}$$
, $2-t = \frac{5}{x}$
Similarly $2-t = \frac{4}{y}$
Equating gives $\frac{5}{x} = \frac{4}{y}$ \Rightarrow $5y = 4x$

(b)
$$y = 4 \sin 2t \sin t$$

 $= 4 \times 2 \sin t \cos t \times \sin t$ since $\sin 2t = 2 \sin t \cos t$
 $= 8 \cos t \sin^2 t$
 $= 8 \cos t (1 - \cos^2 t)$ since $\sin^2 t + \cos^2 t = 1$
 $y = 8x(1 - x^2)$ since $x = \cos t$

E.g. 4 The curve C is defined by the parametric equations $x = 2t^2 - 7t$, $y = 10 - t^2$.

- (a) Find the value of a if (a, 1) is a point on the curve and a > 1.
- (b) Decide whether (-6, 4) lies on curve C.

Working: (a) Substitute
$$y = 1$$
 into $y = 10 - t^2$: $1 = 10 - t^2$: $\therefore t = \pm 3$
When $t = 3$, $x = 2 \times 3^2 - 7 \times 3 < 1$
When $t = -3$, $x = 2 \times (-3)^2 - 7 \times (-3) = 39 > 1$
So $a = 39$

(b) Substitute
$$x = -6$$
 into $x = 2t^2 - 7t$: $-6 = 2t^2 - 7t$
Solving $2t^2 - 7t + 6 = 0$: $(2t - 3)(t - 2) = 0$
when $x = -6$, $t = 1.5$ or 2
Substitute $t = 1.5$ into $y = 10 - t^2$ gives $y = 7.75 \neq 4$
Substitute $t = 2$ into $t = 10 - t^2$ gives $t = 10$

Video: Introduction to parametric functions

Parametric functions EQ

Solutions to Starter and E.g.s

Exercise

p256 12B Qu 2i, 3iac, 4i, 5-7