Recursive Sequences

Starter

1. (Review of GCSE material) Find the first 4 terms of the sequence given by $u_n = n(n + 2)$.

Working: When n = 1, $u_1 = 1(1 + 2) = 3$ When n = 2, $u_2 = 2(2 + 2) = 8$ When n = 3, $u_3 = 3(3 + 2) = 15$ When n = 4, $u_4 = 4(4 + 2) = 24$

- 2. (Review of GCSE material) A sequence is generated by the recurrence relation $u_1 = 2$, $u_{n+1} = 3u_n + k$.
 - (a) Find u_3 in terms of k.
 - (b) Given that $u_4 = 28$, find k.

Working: (a)
$$u_1 = 2$$

 $u_{n+1} = 3u_n + k \Rightarrow u_2 = 3u_1 + k = 3 \times 2 + k = 6 + k$
 $\therefore u_3 = 3u_2 + k = 3 \times (6 + k) + k = 18 + 4k$

- (b) $u_4 = 3u_3 + k = 3 \times (18 + 4k) + k = 54 + 13k$ $u_4 = 28 \implies 54 + 13k = 28$ 13k = -26k = -2
- **E.g. 1** A sequence has n-term given by $u_n = 7n 16$. Show that the sequence is increasing.

Working: $u_n = 7n - 16$, $u_{n+1} = 7(n+1) - 16 = 7n - 9$ $u_{n+1} > u_{n+1} - 7 = 7n - 16 = u_n$. Since $u_{n+1} > u_n$, the sequence in increasing

E.g. 2 A sequence is defined by the recurrence relation $u_1 = 100$, $u_{n+1} = 0.5u_n + 18$. Find the limit if it exists.

Working: Let *L* be the limit of the sequence. Then $L = u_{n+1} = u_n$ L = 0.5L + 18Solving gives L = 36

E.g. 3 In a sequence $u_1 = 6$, $u_2 = 7$ and $u_3 = 8.5$. If the recurrence relation is of the form $u_{n+1} = au_n + b$, find the values of the constants a and b.

Working: $u_{n+1} = au_n + b \Rightarrow u_2 = au_1 + b \Rightarrow 7 = 6a + b$ Similarly: $u_3 = au_2 + b \Rightarrow 8.5 = 7a + b$ Solving simultaneously gives a = 1.5, b = -2

www.mathspanda.com

E.g. 4 A linear recurrence relation is given by $u_{n+1} = au_n + b$. Given that the sequence converges find the limit value, *L*, in terms of *a* and *b*.

Working: If the sequence converges then
$$L = u_{n+1} = u_n$$

So $L = aL + b \implies L(1-a) = b \implies L = \frac{b}{1-a}$

E.g. 5 A bank deposit account had a balance of £328 in August 2017, £504.40 in August 2018 and £689.62 in August 2019. The interest rate remained constant, no money was withdrawn but a capital amount was added each year. Calculate the interest rate and capital added per year.

Hint: Let the recurrence formula be $u_{n+1} = au_n + b$ where b is the capital added.

- **Working:** $u_1 = 328$ and $u_{n+1} = au_n + b$ $u_2 = au_1 + b = 328a + b$ so 328a + b = 504.40 $u_3 = au_2 + b = 504.40a + b$ so 504.40a + b = 689.62Solving simultaneously gives a = 1.05 and b = 160So the interest rate is 5% and capital added is £160
- *E.g. 6** Two power companies share 100000 customers. PowerUs lose 20% of its customers to Light U each year. Light U loses 30% of its customers to PowerUs each year.
 - (a) Show that the recursive formula for PowerUs is $P_{n+1} = 0.8P_n + 0.3L_n$
 - (b) How many customers should each company have after a long period of time?
 - *Hint:* Two power companies share 100000 customers \Rightarrow $P_n + L_n = 100000$

Working: (a) P loses 20% of own customers but gains 30% of L's customers
i.e.
$$P_{n+1} = 0.8P_n + 0.3L_n$$

(b) The companies share 100000 customers so $P_n + L_n = 100000$
L loses 30% of own customers but gains 20% of P's customers
i.e. $L_{n+1} = 0.7L_n + 0.2P_n$
 $P_{n+1} = 0.5P_n + 30000$
After a long period of time $P = P_{n+1} = P_n$ and $L = L_{n+1} = L_n$
 $P = 0.8P + 0.3L$ so $2P = 3L$
Given that $P + L = 100000$ (total number of customers)
L = 60000 so PowerUs expects 60000 and LightU 40000 customers

Video: <u>Recurrence relationships</u>

Recurrence relationships EQ

Solutions to Starter and E.g.s

Exercise

p66 4A Qu 1-i, 2i, 3i, 4i, 5-10