Acceleration in horizontal circular motion

Starter

(Review of last lesson) 1.

A cyclist completes a circuit of a circular track in 14 s. Calculate her exact angular speed.

Notes

The direction of the velocity is along a tangent to the circle. When the word velocity is used on its own, you can assume it refers to the linear, or tangential, speed.

Movement in a circle has two types of acceleration — tangential, a_r and radial, a_r — which are perpendicular to each other. As the names suggest, tangential acceleration acts along the tangents to the circle and *radial acceleration* acts along the radius of the circle.

We will consider particles moving at a constant velocity around a horizontal circle — in which case there is no tangential acceleration i.e. $a_t = 0$.

The direction of the *acceleration is towards the centre of the circle*. Since F = ma, the force is in the same direction as the acceleration so the force is towards the centre of the circle. This radial force (i.e. along the radius) is called the *centripetal force*.

What is the formula for radial acceleration, a_r ?

The proof of the following formula is beyond AS and is not needed for the course:

$$a_r = r\omega^2$$

Using $v = r\omega$, we can substitute r:

Using $v=r\omega$, we can substitute r: $a_r=v\omega$ Using $\omega=\frac{v}{r}$, we can substitute ω : $a_r=\frac{v^2}{r}$

There are three formulae for the radial acceleration — the key is to chose the most appropriate one for the question.

Remember: a_r is directed towards the centre of the circle.

A particle travelling around a circle is always accelerating towards the centre of the circle, but without getting any closer.

- **E.g. 1** A turntable is rotating at a constant rate of 45 rpm. A fly is standing on it, 8 cm from its centre. Find:
 - the angular speed (a)
 - (b) the tangential speed and
 - the acceleration of the fly, stating the direction of the acceleration. (c)

Working: (a) Angular speed,
$$\omega = \frac{45}{60} \times 2\pi = \frac{3\pi}{2}$$
 rad/s

www.mathspanda.com

Problems involving the centripetal force

By using the radial acceleration, a_r , and $F=m\,a$, problems can be solved involving forces. The key is to select the correct equation from $a_r=r\omega^2$ or $a_r=v\omega$ or $a_r=\frac{v^2}{r}$.

E.g. 2 A particle of mass 0.4 kg moves on a horizontal circle, centre O. The speed of the particle is 3 m/s and the force on P directed towards O is 15 N. Calculate the distance OP.

Using F = ma radially: $15 = 0.4a_r \Rightarrow a_r = \frac{15}{0.44} = 37.5$ Using $a_r = \frac{v^2}{r}$: $37.5 = \frac{3^2}{r} \Rightarrow r = \frac{9}{37.5} = \frac{6}{25} = 0.24$ Working: The distance OP is 0.24 m

- **E.g.** 3 A radial force of 20 N is required to maintain a particle moving in a horizontal circle of diameter 1.8 m with speed 4.8 m/s. Calculate the mass of the particle.
- **E.g.** 4 A particle P of mass 0.3 kg is attached to one end of a light inextensible string of length 0.6 m. The other end of the string is attached to a fixed point O on a smooth horizontal surface. *P* moves in a circular path with speed 4 m/s.
 - Calculate the tension in the string.

Given that the tension in the string cannot exceed 30 N, find

- the maximum tangential speed of P in m/s, and
- the maximum angular speed in rad/s. (c)

Video: **Acceleration in horizontal circle**

Solutions to Starter and E.g.s

Exercise

p87 4B Qu 1-6 (AS), 7-8 (A2 - needs coefficient of friction)

Summary Radial acceleration,
$$a_r$$
, is directed towards the centre of the circle and is given by:
$$a_r = r\omega^2 \qquad \dots \text{or} \dots \qquad a_r = \frac{v^2}{r}$$

By using the radial acceleration, a_r , and F = ma, problems can be solved involving forces. The key is to select the correct equation for radial acceleration, a_r .