Goodness-of-Fit Tests

Starter

- 1. (Review of last lesson) During an influenza epidemic 15 boys and 8 girls became ill out of a class of 22 boys and 28 girls. Assuming this class may be treated as a random sample of the age group, test at the 5% level hypothesis whether there is a connection between sex and susceptibility to influenza.
- 2. One hundred digits between 0 and 9 are generated by a computer with frequencies below:

Digit	0	1	2	3	4	5	6	7	8	9
Frequency	11	8	8	7	8	9	12	9	13	15

- (a) Write down the expected frequencies.
- (b) Calculate the $\chi^2_{calc} = \sum \frac{(O_i E_i)^2}{E_i}$ value for these values
- (c) State how many degrees of freedom there are in the table and state the 5% critical value from the χ^2 tables.
- (d) Could the numbers have been generated randomly? Test at the 5% level, stating your null and alternative hypotheses clearly.

Notes

The χ^2 value is an immensely useful statistic as it allows us to test whether data from a frequency table fits a particular distribution, whether uniform, Binomial, Poisson etc.

Expected frequency = probability × total observed frequency

Degrees of freedom, ν , for goodness of fit

From the starter, we could fill in the observed frequencies for digits 0—8 and then the observed frequency for 9 is fixed. That is why there are 9 degrees of freedom.

In such situations, degrees of freedom, $\nu =$ number of cells after combining -1

N.B. Remember to use Menu >> 7: Distribution to find the expected probabilities faster. It is useful to have a 2nd calculator to multiply these probabilities by the total frequency.

www.mathspanda.com

E.g. 1 The data in the table are thought to be modelled by the binomial distribution B (10, 0.2). Conduct a test at the 5% significance level to check whether this is a good model.

X	0	1	2	3	4	5	6	7	8
Frequency of <i>x</i>	12	28	28	17	7	4	2	2	0

Working:

x	0	1	2	3	4	5	6	7	8
Frequency of <i>x</i>	10.7	26.8	30.2	20.1	8.8	2.6	0.55	0.08	0.01

But $E_i \ge 5$ for 5-8 so we need to combine 4-8

x	0	1	2	3	4-8
Observed	12	28	28	17	15
Expected	10.7	26.8	30.2	20.1	12.1

 H_0 : the results can be modelled by a B $(10,\,0.2)$ distribution H_1 : the results cannot be modelled by a B $(10,\,0.2)$ distribution

Degrees of freedom, $\nu = 5 - 1 = 4$

The critical value at the 5 % level is $\chi_4^2(5\%) = 9.488$

$$\begin{split} \chi_{calc}^2 &= \sum \frac{(O_i - E_i)^2}{E_i} \\ &= \frac{(12 - 10.7)^2}{10.7} + \frac{(28 - 26.8)^2}{26.8} + \frac{(28 - 30.2)^2}{30.2} + \frac{(17 - 20.1)^2}{20.1} + \frac{(15 - 12.1)^2}{12.1} \\ \chi_{calc}^2 &= 1.55 \\ \mathrm{Since} \, \chi_{calc}^2 &= 1.55 < 9.488 = \chi_4^2 (5\%), \, \mathrm{we \, do \, not \, reject} \, H_0. \\ \mathrm{B} \, (10, \, 0.2) \, \mathrm{is \, a \, possible \, model \, for \, the \, data} \end{split}$$

E.g. 2 The table below shows the number of employees in thousands at five factories and the number of accidents in 3 years.

Factory	Α	В	С	D	E
Employees (000s)	4	3	5	1	2
Accidents	22	14	25	8	12

Using a 2.5 % level significance, test the hypothesis that the number of accidents per 1000 employees is constant at each factory.

Hint: work out the number of accidents per 1000 employees.

Degrees of freedom, ν , for goodness of fit — REVISITED

Degrees of freedom becomes more complicated when a required parameter for the distribution is not given. For example:

- Binomial distribution the value of p is not given
- Poisson distribution the value of λ is not given

In such cases:

www.mathspanda.com

E.g. 3 The number of telephone calls arriving at an exchange in 6—minute periods were recorded over a period of 8 hours, with the following results:

Number of calls	0	1	2	3	4	5	6	7	8
Frequency	8	19	26	13	7	5	1	1	0

Can these results be modelled by a Poisson distribution? Test at the $10\,\%$ level.

Working:

 H_0 : the results can be modelled by a Poisson distribution H_1 : the results cannot be modelled by a Poisson distribution Since we don't have λ we must estimate it from the data.

$$\lambda = \frac{176}{80} = 2.2$$

Number of calls	0	1	2	3	4	5	6	7	8
Frequency	8	19	26	13	7	5	1	1	0
Expected	8.86	19.5	21.5	15.7	8.65	3.81	1.4	0.44	0.12

But $E_i \ge 5$ for 5-8 so we need to combine 5-8

Number of calls	0	1	2	3	4	5-8
Frequency	8	19	26	13	7	7
Expected	8.86	19.5	21.5	15.7	8.65	5.8

Degrees of freedom, $\nu=6-1-1=4$ λ is estimated The critical value at the $10\,\%$ level is $\chi_4^2(10\%)=7.779$

$$\begin{split} \chi_{calc}^2 &= \sum \frac{(O_i - E_i)^2}{E_i} \\ &= \frac{(8 - 8.86)^2}{8.86} + \frac{(19 - 19.5)^2}{19.5} + \frac{(26 - 21.5)^2}{21.5} + \frac{(13 - 15.7)^2}{15.7} + \frac{(7 - 8.65)^2}{8.65} + \frac{(7 - 5.8)^2}{5.8} \\ \chi_{calc}^2 &= 2.11 \\ \mathrm{Since} \ \chi_{calc}^2 &= 2.11 < 7.779 = \chi_4^2 (10\%), \ \mathrm{we \ do \ not \ reject} \ H_0. \\ \mathrm{Poisson \ is \ a \ possible \ model \ for \ the \ data}. \end{split}$$

E.g. 4 A marksman fires 6 shots at a target and records the number of bull's eye hits. After a series of 100 such trials he analyses his scores and the frequencies are below.

Number of hits	0	1	2	3	4	5	6	
Frequency	0	26	36	20	10	6	2	

- (a) Estimate the probability of hitting a bull's eye.
- (b) Use a test at the 5% significance level to see if these results are consistent with the assumption of a binomial distribution.
- **N.B.** Yates' correction is only used for contingency tables

www.mathspanda.com

Video B: Goodness of fit tests

Solutions to Starter and E.g.s

Exercise

AS: p111 6C Qu 1i, 2-4, 7, 11, (12, 13 red) — avoid Normal distribution questions.

A2: p111 6C Qu 5, 6, 8-10

Summary

Expected frequency = probability × total observed frequency

Degrees of freedom becomes more complicated when a required parameter for the distribution is not given. For example:

- ullet Binomial distribution the value of p is not given
- Poisson distribution the value of $\bar{\lambda}$ is not given

In such cases:

Degrees of freedom, $\nu = \text{cells after combining} - \text{parameters estimated} - 1$