Scalar product and angles

Starter

1. Find the position vector of the point of intersection of $\frac{x+2}{4} = y = \frac{z-1}{2}$ and x = y + 1

$$\frac{1}{2} = \frac{y + z}{2} = 4 - z$$

2. Find the magnitude (modulus) of the following vectors:

(a)
$$\begin{pmatrix} -6\\5 \end{pmatrix}$$
 (b) $5\mathbf{i} - 3\mathbf{j} + \mathbf{k}$

Notes

The scalar product of two vectors \mathbf{a} and \mathbf{b} is defined as:

a. **b** = $|a| |b| \cos \theta$ where θ is the angle between the vectors

Notice that the vectors must be pointed away from where they would intersect.

N.B. The result of the scalar product of two vectors is a scalar i.e. a number.

Finding the scalar product of two vectors when we do not know the angle between them

E.g. 1 (a) Using the definition of the scalar product, $\mathbf{a} \cdot \mathbf{b} = |a| |b| \cos \theta$, write down the values of: (i) **i**. **i** (ii) **i**. **j**

(b) Hence write down the values of:
(i)
$$\mathbf{j} \cdot \mathbf{j}$$
 (ii) $\mathbf{k} \cdot \mathbf{k}$ (iii) $\mathbf{i} \cdot \mathbf{k}$ (iv) $\mathbf{j} \cdot \mathbf{k}$
(c) Find the value of $\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 5 \end{pmatrix}$.

Component form of scalar product: $\mathbf{u} \cdot \mathbf{v} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = u_1 v_1 + u_2 v_2 + u_3 v_3$

\3/ \6/

E.g. 2 Find the scalar products of the following pairs of vectors:

(a)
$$\begin{pmatrix} 4 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 10 \end{pmatrix}$$
 (b) $(3\mathbf{i} + 5\mathbf{j}) \cdot (8\mathbf{i} - 5\mathbf{j})$

Working: (a)
$$\begin{pmatrix} 4 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 10 \end{pmatrix} = 3 \times 4 + 6 \times 10 = 72$$

Page 1 of 3

E.g. 3 Given that
$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
, find the value of $\mathbf{v} \cdot \mathbf{v}$ in terms of \mathbf{v} ?

Working:
$$\mathbf{v} \cdot \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1^2 + v_2^2 + v_3^2$$

But $|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$
So $\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2$

Calculating the angle between two vectors

E.g. 4 Using the scalar product find the angle between the two vectors $\begin{pmatrix} 5 \\ 7 \end{pmatrix}$ and $\begin{pmatrix} 6 \\ -2 \end{pmatrix}$.

Working:
$$\begin{pmatrix} 5\\7 \end{pmatrix} \cdot \begin{pmatrix} 6\\-2 \end{pmatrix} = 5 \times 6 + 7 \times (-2) = 16$$

 $\begin{vmatrix} 5\\7 \end{pmatrix} \end{vmatrix} = \sqrt{5^2 + 7^2} = \sqrt{74} \text{ and } \begin{vmatrix} 6\\-2 \end{pmatrix} \end{vmatrix} = \sqrt{6^2 + (-2)^2} = 2\sqrt{10}$
Using $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|a| |b|}$: $\cos \theta = \frac{16}{\sqrt{74} \times 2\sqrt{10}}$
The angle between the vectors is 72.9°.

 $\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|a||b|}$ The angle between two vectors can be found using the scalar product:

E.g. 5 For each of the following pairs of vectors find the angle between them: (b) $\begin{pmatrix} -2\\ 8 \end{pmatrix}$ and $\begin{pmatrix} -5\\ -9 \end{pmatrix}$

(a)
$$3i - j$$
 and $5i - 2j$

E.g. 6 What can be said about the angle between the two non-zero vectors
$$\mathbf{a}$$
 and \mathbf{b} if:
(a) $\mathbf{a} \cdot \mathbf{b} = 0$ (b) $\mathbf{a} \cdot \mathbf{b} > 0$ (b) $\mathbf{a} \cdot \mathbf{b} < 0$
Working: (a) \mathbf{a} and \mathbf{b} are non-zero vectors $\Rightarrow |\mathbf{a}| \neq 0$ and $|\mathbf{b}| \neq 0$
So if $\mathbf{a} \cdot \mathbf{b} = 0 \Rightarrow \cos \theta = 0 \Rightarrow \theta = 90^{\circ}$
Therefore, the vectors \mathbf{a} and \mathbf{b} are perpendicular to one another.

Angle between two lines given in vector form

E.g. 7 Find the acute angle between the lines
$$\mathbf{r} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\mathbf{r} = \begin{pmatrix} 7 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 5 \end{pmatrix}$

Since each line is parallel to its direction vector, we can find the angle Working: between the lines by finding the angle between the direction vectors. 1.1 1

$$\begin{pmatrix} 1\\2 \end{pmatrix} \cdot \begin{pmatrix} -3\\5 \end{pmatrix} = 1 \times (-3) + 2 \times 5 = 7$$
$$\begin{vmatrix} 1\\2 \end{pmatrix} = \sqrt{1^2 + 2^2} = \sqrt{5}$$
$$\begin{vmatrix} -5\\-9 \end{vmatrix} = \sqrt{(-3)^2 + 5^2} = \sqrt{34}$$
Using $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|a||b|}$: $\cos \theta = \frac{7}{\sqrt{5} \times \sqrt{34}}$

The angle between the lines is 57.5°.

To find the angle between two lines in vector form, find the angle between the direction vectors.

- *E.g. 8* Find the angles between the following pairs of lines:
 - $\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} \mathbf{k} + \lambda(2\mathbf{i} \mathbf{j} 2\mathbf{k})$ and $\mathbf{r} = \mathbf{i} 2\mathbf{j} + \mathbf{k} + \mu(7\mathbf{i} + 4\mathbf{j} 4\mathbf{k})$ (a) $\mathbf{r} = (2 + 6\lambda)\mathbf{i} + (1 - 3\lambda)\mathbf{j} + 2\lambda\mathbf{k}$ and $\mathbf{r} = (2 + 4\mu)\mathbf{i} + 7\mathbf{j} + (5 + 3\mu)\mathbf{k}$ (b)

Video: Scalar product **Angle between 2 lines** Video:

Scalar product EQ

Solutions to Starter and E.g.s

Exercise

p54 2D Qu 1i, 2i, 3i, 4a, 5i, 6i, 7-11

Summary

Definition of scalar product: $\mathbf{a} \cdot \mathbf{b} = |a| |b| \cos \theta$

Definition of scalar product: $\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = u_1 v_1 + u_2 v_2 + u_3 v_3$

 $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$ The angle between two vectors can be found using the scalar product:

If $\mathbf{a} \cdot \mathbf{b} = 0$ the vectors \mathbf{a} and \mathbf{b} are perpendicular to one another. \Rightarrow

If **a** . **b** > 0 \Rightarrow the angle between the vectors is acute.

If **a** . **b** < 0 \Rightarrow the angle between the vectors is obtuse.

To find the angle between two lines in vector form, find the angle between the direction vectors.