Topic X3 Mechanics AS (Pre-TT A) [60] MARKSCHEME

1.

40 cos35°	B1		
$WD = 40\cos 35^{\circ} \times 100$	M1		
3280 J	A1 3	ignore units	3

2.

v^2 = 2gh $u=\sqrt{4g}$ or $\sqrt{39.2}$ or 6.26 $v=\sqrt{2.8g}$ or $\sqrt{27.44}$ (5.24) I=? 0.3(6.26 + 5.24) 3.45 Ns	M1 A1 A1 M1 A1	5	kinematics or energy speed of impact (±) speed of rebound (±) must be sum of mags. of vels. ✓ must be positive	5	
--	----------------------------	---	---	---	--

3.

Question	Scheme	Marks	AOs
7(a)	Energy Loss = KE Loss – PE Gain	M1	3.3
	$= \frac{1}{2} \times 0.5 \times 25^2 - 0.5 g \times 20$	A1	1.1b
	= 58.25 = 58 (J) or 58.3 (J)	A1	1.1b
		(3)	
(b)	Using work-energy principle, $20 R = 58.25$	M1	3.3
	R = 2.9125 = 2.9 or 2.91	A1ft	1.1b
		(2)	
(c)	Make resistance variable (dependent on speed)	B1	3.5c
		(1)	
		(6 п	narks)

4.

(a)	Shows that $c = 0$ by considering the dimensions of mass and deduces that the speed does not depend on the density of the liquid	AO2.2a	M1	$LT^{-1} = (LT^{-2})^a \times L^b \times (MT^{-3})^c$ $0 = c$ Since $c = 0$, v does not depend on
	Rejects David's model because speed is shown not to depend on density	AO2.3	A1	the density of the liquid. So David's model is incorrect.
(b)	Uses dimensions to form an equation for dimensional consistency.	AO1.1a	M1	$LT^{-1} = (LT^{-2})^a \times L^b$ $1 = a + b$ $-1 = -2a$ $a = \frac{1}{2}$
	Obtains correct values for a and b .	AO1.1b	A1	$b = \frac{1}{2}$
	Total		4	

5.

(i)	$D = 3000/5^2 = 120$	M1			
		A1	2	AG	
(ii)	120 - 75 = 100a	M1			
	$a = 0.45 \text{ ms}^{-2}$	A1	2		
(iii)	100x9.8x1/98	B1		weight component	
	$3000/v^2 = 3v^2 + 100x9.8x1/98$	M1			
	$3000 = 3v^4 + 10v^2$	A1		aef	
	solving quad in v ²	M1		$(v^2 = 30)$	
	$v = 5.48 \text{ ms}^{-1}$	A1	5	accept √30	9

6.

(i)	6m = 3mx + 2my	M1		- 3mx ok if clear on diagram	
	6 = 3x + 2y	A1		m must have been cancelled	
	e = 1 = (y-x)/2	M1		2 2 2	
				or $\frac{1}{2}$.3m.2 ² = $\frac{1}{2}$.3mx ² + $\frac{1}{2}$.2my ²	
		A1		$6 = 3x^2/2 + y^2$ aef	
	x = 0.4 or $2/5$	A1		sc A1A0 if $x = 2$, $y = 0$ not rejected	
	y = 2.4 or $12/5$	A1	6		
(ii)	4.8m or 24m/5	ы√		$\int 2m x$ their y or $3m(2$ -their x)	
	same as original dir. of A	B1	2	use their diagram(or dir. of B)	
(111)	e = (2.8 - 1.0)/2.4	M1			
	0.75 watch out for \pm fiddles	A1	2	√ (1.8/their y) with 0 o e 0 1	10

7.

(i)	M1		For use of conservation of energy
$0.5x0.3v^2 - 0.5x0.3x2^2 =$			
0.3x9.8x0.5cos60 -			
	A2,1,	0	-1 each error
$0.3x9.8x0.5\cos\theta$			
$v^2 = 8.9 - 9.8\cos\theta$	A1	[4]	AG
(ii)	M1		For using Newton's 2 nd law radially
$T + 0.3x9.8\cos\theta = 0.3v^2/0.5$	A1		
$T + 2.94\cos\theta =$	M1		For correct substitution for v ²
$0.6(8.9 - 9.8\cos\theta)$			
Tension is $(5.34 - 8.82\cos\theta)$ N	A1	[4]	Accept any correct form
(iii)	M1		For using $T = 0$
Basic value $\theta = 52.7^{\circ}$	A1 ft		ft any T of the form a - b $\cos heta$
Angle = (360-52.7) - 60	M1		
Angle turned through is 247°	A1	[4]	

٥.					
(i)	T = 4.9 N	B1		B0 for 0.5g	6
	$T = 0.3 \times 0.2 \times \omega^2$	M1		or $0.3v^2/0.2$ and $\omega = v/0.2$	
		A1			
	ω = 9.04 rads ⁻¹	A1	4		
(ii)	$\cos\theta = \sqrt{0.6/0.8} (0.968)$	B1		(θ=14.5°) angle to vert. or equiv.	
	$T\cos\theta = 0.5 \times 9.8$	M1		angle consistent with diagram	
		A1		can be their angle	
	T = 5.06 N	A1	4		
(iii)	$T\sin\theta = 0.5 \times v^2/0.2$	M1		must be a component of T	
		A1		(sinθ = ¼) can be their angle	
	v = 0.711 ms ⁻¹	A1	3		11