Average and Spread of Discrete Random Variables

Starter

1. (Review of last lesson)

The discrete random variable R has probability distribution function given by P(R = r) = c(3 - r) for r = 0, 1, 2, 3. Find the value of the constant c.

Working: Since it is a random variable the sum of the probabilities add up to 1.

$$P(R = 0) + P(R = 1) + P(R = 2) + P(R = 3) = 1$$

$$c(3-0) + c(3-1) + c(3-2) + c(3-3) = 1$$

$$3c + 2c + c = 1$$

$$c = \frac{1}{6}$$

2. In the previous lesson we found the probability distribution, X, of a biased 4-sided dice was:

$$X:$$
 1 2 3 4 $P(X=x):$ 0.48 0.24 0.16 0.12

- (a) If we rolled the dice 100 times, how many of each score would we expect to get?
- (b) Using your expected frequencies from (a), find the mean score per roll.

Working: (a) Expected frequency = Probability \times Number of trials Expected frequency of $1 = P(X = 1) \times 100 = 0.48 \times 100 = 48$ The full table is:

x: 1 2 3 4 Expected frequencies: 48 24 16 12

(b) Mean =
$$\frac{1 \times 48 + 2 \times 24 + 3 \times 16 + 4 \times 12}{100} = 1.92$$

E.g. 1 How could the answer to 2(b) be found from the probability distribution?

$$x:$$
 1 2 3 4 $P(X = x):$ 0.48 0.24 0.16 0.12

Working:

$$P(X = x)$$
: $\begin{pmatrix} 1 \\ 0.48 \end{pmatrix} \begin{pmatrix} 2 \\ 0.24 \end{pmatrix} \begin{pmatrix} 3 \\ 0.16 \end{pmatrix} \begin{pmatrix} 4 \\ 0.12 \end{pmatrix}$

Mean = $1 \times 0.48 + 2 \times 0.24 + 3 \times 0.16 + 4 \times 0.12 = 1.92$ The value 1.92 is called the mean of X or expected value of X.

E.g. 2 A random variable X has a pdf defined as shown. Find E(X).

$$x: -2 -1 0 1 2$$

 $P(X = x): 0.3 0.1 0.15 0.4 0.05$

Working:

$$P(X = x)$$
: $\begin{pmatrix} -2 \\ 0.3 \end{pmatrix} \begin{pmatrix} -1 \\ 0.1 \end{pmatrix} \begin{pmatrix} 0 \\ 0.15 \end{pmatrix} \begin{pmatrix} 1 \\ 0.4 \end{pmatrix} \begin{pmatrix} 2 \\ 0.05 \end{pmatrix}$

$$E(X) = (-2) \times 0.3 + (-1) \times 0.1 + 0 \times 0.15 + 1 \times 0.4 + 2 \times 0.05$$

= -0.2

www.mathspanda.com

E.g. 3 The random variable X has probability distribution as shown in the table.

х	1	2	3	4	5
P(X=x)	0.1	0.3	0.2	0.3	0.1

Find Var(X) and hence the standard deviation.

Working
$$\mu = E(X) = (1 \times 0.1) + (2 \times 0.3) + (3 \times 0.2) + (4 \times 0.3) + (5 \times 0.1) \\ E(X) = 3 \qquad \text{we could get this from the symmetry of the distribution}$$

$$E(X^2) = (1^2 \times 0.1) + (2^2 \times 0.3) + (3^2 \times 0.2) + (4^2 \times 0.3) + (5^2 \times 0.1) \\ = 10.4$$

$$\text{Var}(X) = E(X^2) - E^2(X) = 10.4 - 3^2 = 1.4$$

$$\text{Standard deviation} = \sqrt{1.4} = \frac{\sqrt{35}}{5} \approx 1.18$$

E.g. 4 Two fair cubical dice are rolled and S is the sum of their scores. Find:

- (a) the distribution of S.
- (b) the expected value of S
- (c) the standard deviation of S

Working (a)
$$s:$$
 2 3 4 5 6 7 8 9 10 11 12 $P(S=s):$ $\frac{1}{36}$ $\frac{2}{36}$ $\frac{3}{36}$ $\frac{4}{36}$ $\frac{5}{36}$ $\frac{6}{36}$ $\frac{5}{36}$ $\frac{4}{36}$ $\frac{3}{36}$ $\frac{2}{36}$ $\frac{1}{36}$

(b)
$$E(S) = \left(2 \times \frac{1}{36}\right) + \left(3 \times \frac{2}{36}\right) + \left(4 \times \frac{3}{36}\right) + \dots + \left(12 \times \frac{1}{36}\right)$$

 $E(S) = 7$

(c)
$$E(S^2) = \left(2^2 \times \frac{1}{36}\right) + \left(3^2 \times \frac{2}{36}\right) + \dots + \left(12^2 \times \frac{1}{36}\right)$$

= $\frac{329}{6}$

Standard deviation =
$$\sqrt{\text{Var}(S)}$$

= $\sqrt{E(S^2) - E^2(S)}$
= $\sqrt{\frac{329}{6} - 7^2}$
= $\frac{\sqrt{210}}{6} \approx 2.42$

Video: Expected values E(X)
Video: Variance Var(X)

Solutions to Starter and E.g.s

www.mathspanda.com

Exercise p24 2A Qu 1i, 2-9, (10 red)

