Invariant points and invariant lines

Starter

1. A square undergoes a shear, x-axis invariant, mapping $(0, 1) \rightarrow (-4, 1)$. The point (6, 2) is a vertex of the square before the shear. Find the new coordinates of the vertex.

Working: x-axis invariant \Rightarrow y-coordinate is unchanged $(0, 1) \rightarrow (-4, 1) \Rightarrow$ the factor is -4 $\binom{6}{2} \rightarrow \binom{6 + (-4) \times 2}{2} = \binom{-2}{2}$

The new coordinates of the vertex are (-2, 2)

2. Find the matrix which transforms $\binom{4}{3} \rightarrow \binom{9}{10}$ and $\binom{2}{1} \rightarrow \binom{5}{6}$.

Working: $\mathbf{M} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 9 \\ 10 \end{pmatrix} \text{ and } \mathbf{M} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$ $\therefore \mathbf{M} \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 9 & 5 \\ 10 & 6 \end{pmatrix}$ Post-multiply by $\begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix}^{-1}$: $\mathbf{M} = \begin{pmatrix} 9 & 5 \\ 10 & 6 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix}^{-1}$ $= \begin{pmatrix} 3 & -1 \\ 4 & -2 \end{pmatrix}$

3. Find the values of x and y such that:

(a)
$$\begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 (b) $\begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$

Working: (a) $2x + 3y = x \Rightarrow x = -3y$ $4x - y = y \Rightarrow 2x = y$ Substituting gives x = -6xThis is only true when x = 0If x = 0 then y = 0

The values that satisfy $\begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ are x = 0, y = 0.

(b) $-x + 2y = x \Rightarrow y = x$ x = ySo any point on the line y = x satisfies $\begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$.

E.g. 1 By letting
$$\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, form and solve the simultaneous equations of $\mathbf{M} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ to show that $y = \begin{pmatrix} a-c-1 \\ d-b-1 \end{pmatrix} x$ is the equation of invariant points.

Working:
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$ax + by = x \qquad \Rightarrow \qquad (a-1)x + by = 0$$

$$cx + dy = y \qquad \Rightarrow \qquad cx + (d-1)y = 0$$
Equate:
$$(a-1)x + by = cx + (d-1)y$$
Rearrange:
$$(d-b-1)y = (a-c-1)x$$
So
$$y = \left(\frac{a-c-1}{d-b-1}\right)x$$
 is the equation of a line of invariant points

E.g. 2 Using the equations formed from
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$
, state what happens when: (a) $a=1$ (b) $d=1$

Working: (a)
$$ax + by = x$$
 When $a = 1$: $x + by = x \Rightarrow y = 0$ Substituting $y = 0$ in $cx + dy = y$: $x = 0$ So the origin is the unique invariant point.

(b)
$$cx + dy = y$$

When $d = 1$: $cx + y = y \Rightarrow x = 0$
Substituting $x = 0$ in $ax + by = x$: $y = 0$
So the origin is unique invariant point

E.g. 3 Find the invariant points under the transformation
$$\begin{pmatrix} 4 & 1 \\ 6 & 3 \end{pmatrix}$$
.

Working:
$$\begin{pmatrix} 4 & 1 \\ 6 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$4x + y = x \qquad \Rightarrow \qquad y = -3x$$

$$6x + 3y = y \qquad \Rightarrow \qquad y = -3x$$
The equations are equal so the invariant points under the transformation

The equations are equal so the invariant points under the transformation $\begin{pmatrix} 4 & 1 \\ 6 & 3 \end{pmatrix}$ are all the points lying on the line y = -3x i.e. all points of the form (k, -3k).

E.g. 4 Find the invariant points under the transformation $\begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$.

Working:
$$\begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$3x + 4y = x \qquad \Rightarrow \qquad x = -2y$$

$$x + 2y = y \qquad \Rightarrow \qquad x = -y$$
Substituting gives $y = 2y$
This is only true when $y = 0 \Rightarrow x = 0$
The invariant point under the transformation $\begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$ is $(0, 0)$.

E.g. 5 Find the equation of any invariant lines through the origin of the transformation whose matrix is $\begin{pmatrix} 2 & 3 \\ 0 & -1 \end{pmatrix}$.

Working: Any point on the invariant line has coordinates of the form
$$(k, mk)$$
 $\begin{pmatrix} 2 & 3 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} k \\ mk \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ $x = 2k + 3mk \quad \Rightarrow \quad x = k(2+3m) \quad \Rightarrow \quad k = \frac{x}{2+3m}$ $y = -mk$ Substituting $k = \frac{x}{2+3m}$: $y = \left(\frac{-m}{2+3m}\right)x$ Since the gradient must be the same as $y = mx$: $m = \frac{-m}{2+3m}$ $3m^2 + 3m = 0 \quad \Rightarrow \quad m(m+1) = 0 \quad \Rightarrow \quad m = 0 \ \&m = -1$ So $y = 0$ and $y = -x$ are the invariant lines passing through the origin.

E.g. 6 Find the invariant lines of the matrix $\begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$ which pass through the origin.

Working: Any point on the invariant line has coordinates of the form
$$(k, mk)$$

$$\begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} k \\ mk \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$x = 3k + mk \qquad \Rightarrow \qquad x = k(3+m) \qquad \Rightarrow \qquad k = \frac{x}{3+m}$$

$$y = 2k + 4mk \qquad \Rightarrow \qquad y = k(2+4m)$$
 Substituting $k = \frac{x}{3+m}$:
$$y = \left(\frac{2+4m}{3+m}\right)x$$
 Since the gradient must be the same as $y = mx$:
$$m = \frac{2+4m}{3+m}$$

$$m^2 - m - 2 = 0 \Rightarrow (m+1)(m-2) = 0 \Rightarrow m = -1 \& m = 2$$
 So $y = -x$ and $y = 2x$ are the invariant lines passing through the origin.

Invariant lines not passing through the origin

An invariant line through the origin has the form y = mx + c.

Any point on this line is of the form (k, mk + c)

So if
$$y = mx + c$$
 is an invariant line: $\mathbf{M} \begin{pmatrix} k \\ mk + c \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$

Again expand the matrix and form equations involving x and y.

By rearranging, k can be eliminated to form an equation where y = f(m)x + g(m)c.

The lines y = mx + c and y = f(m)x + g(m)c must be the same.

By equating coefficients of x and y we get: m = f(m) and 1 = g(m)

Solve the equation m = f(m) to find values of m.

Check whether these m-values satisfy 1 = g(m):

If they do, y = mx + c is an invariant line

If not, 1 = g(m) is only satisfied when c = 0 so y = mx is an invariant line.

E.g. 7 Find the invariant lines of the matrix $\begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$.

Working: Any point on the invariant line is of the form (k, mk + c).

Any point on the invariant line is of the form
$$(k, mk + c)$$
.

$$\begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} k \\ mk + c \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$x = 2k + mk + c \qquad \Rightarrow \qquad x = k(2 + m) + c$$

$$\Rightarrow \qquad k = \frac{1}{2 + m}x - \frac{1}{2 + m}c$$

$$y = 2k + 3mk + 3c \qquad \Rightarrow \qquad y = k(2 + 3m) + 3c$$
Substituting $k = \frac{1}{2 + m}x - \frac{1}{2 + m}c$:
$$y = \left(\frac{1}{2 + m}x - \frac{1}{2 + m}c\right)(2 + 3m) + 3c$$

$$y = \left(\frac{2 + 3m}{2 + m}\right)x + \left(3 - \frac{2 + 3m}{2 + m}\right)c$$

This image point must lie on the line y = mx + c, so equating coefficients of x and c:

$$x: m = \frac{2+3m}{2+m} \Rightarrow m^2 - m - 2 = 0$$

$$\Rightarrow (m-2)(m+1) = 0$$

$$\Rightarrow m = 2 \text{ or } m = -1$$

Now substitute into the equation formed by equating coefficients of \boldsymbol{c} to see if it satisfies the equation.

if it satisfies the equation.
$$c: \quad 3 - \frac{2+3m}{2+m} = 1$$

$$m = 2: \quad 3 - \frac{2+3\times 2}{2+2} = 3 - \frac{8}{4} = 1$$
So $y = 2x + c$ is an invariant line.
$$m = -1: \quad 3 - \frac{2+3\times(-1)}{2+(-1)} = 3 - \frac{-1}{1} \neq 1$$

$$\therefore \left(3 - \frac{2+3m}{2+m}\right)c = c$$
 is only true when $c = 0$.

So y = -x is the other invariant line.

E.g. 8 Find any invariant lines of the matrix
$$\begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix}$$

Any point on the invariant line is of the form (k, mk + c). Working:

Any point on the invariant line is of the form
$$(k, mk + c)$$
.

$$\begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix} \begin{pmatrix} k \\ mk + c \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$x = 4k + 3mk + 3c \qquad \Rightarrow \qquad x = k(4 + 3m) + 3c$$

$$\Rightarrow \qquad k = \frac{1}{4 + 3m}x - \frac{3}{4 + 3m}c$$

$$y = -3k - 2mk - 2c \qquad \Rightarrow \qquad y = k(-3 - 2m) - 2c$$
Substituting $k = \frac{1}{4 + 3m}x - \frac{3}{4 + 3m}c$:
$$y = \left(\frac{1}{4 + 3m}x - \frac{3}{4 + 3m}c\right)(-3 - 2m) - 2c$$

$$y = \left(\frac{-3 - 2m}{4 + 3m}\right)x + \left(\frac{3(3 + 2m)}{4 + 3m} - 2\right)c$$
This image point must lie on the line $y = mx + c$, so equating containing in the line $y = mx + c$, so equating in the line $y = mx + c$.

This image point must lie on the line y = mx + c, so equating coefficients of x and c:

$$x: m = \frac{-3 - 2m}{4 + 3m} \Rightarrow 3m^2 + 6m + 3 = 0$$
$$\Rightarrow 3(m+1)(m+1) = 0$$
$$\Rightarrow m = -1$$

Now substitute into the equation formed by equating coefficients of c to see if it satisfies the equation.

c:
$$\frac{3(3+2m)}{4+3m} - 2 = 1$$

$$m = -1: \frac{3(3+2m)}{4+3m} - 2 = \frac{3(3-2)}{4-3} - 2 = 1$$

So y = -x + c is the unique invariant line

Video A: **Invariant points and lines** Video B: **Invariant points and lines**

Solutions to Starter and E.g.s

Exercise

p87 3D Qu 1ac, 2ace, 3-5