Mean and Variance of Binomial Distribution

Starter

1. (Review of last lesson)

The random variable $W \sim B(10, 0.35)$. Use your calculator to find:

- P(W = 6) (b) $P(W \le 6)$ (c) $P(W \ge 5)$
- P(4 < W < 7)(c)

Working:

(a) P(W = 6) = 0.0689 use Binomial PD

(b) $P(W \le 6) = 0.9740$

use Binomial CD

(c) P(W > 5) = 1 - P(W < 4) = 0.2485 use Binomial CD

- (d) $P(4 \le W \le 7) = P(W \le 7) P(W \le 3) = 0.4814$ use Binomial CD
- **E.g.** 1 If the probability that it is a fine day is 0.4, find the expected number of fine days in a week, and the standard deviation. Explain the problem with the question.

Working:

 $E(\text{fine days}) = np = 7 \times 0.4 = 2.8 \text{ days}$ Standard deviation = $\sigma = \sqrt{np(1-p)} = \sqrt{7 \times 0.4 \times 0.6} = 1.30$ days Probability of weather one day in a week is not independent of weather on previous day

- **E.g. 2** The random variable X is such that $X \sim B(n, p)$, E(X) = 2 and $Var(X) = \frac{24}{12}$. Find:
 - the values of n and p and (a)
 - (b) P(X = 2).

Working:

 $E(X) = 2 \qquad \Rightarrow \qquad np = 2 \qquad \therefore n = \frac{2}{p}$ $Var(X) = \frac{24}{13} \qquad \Rightarrow \qquad np(1-p) = \frac{24}{13}$ $2(1-p) = \frac{24}{13} \qquad \Rightarrow \qquad 1-p = \frac{12}{13} \text{ so } p = \frac{1}{13}$ (a) $\therefore n = \frac{2}{\frac{1}{13}} = 26$ n = 26 and $p = \frac{1}{12}$

(b)
$$P(X = 2) = {}^{26}C_2 \times \frac{1}{13}^2 \times \left(\frac{1}{13}\right)^{24}$$

 $P(X = 2) = 0.282$

Video: Mean and variance of binomial

Solutions to Starter and E.g.s