Probability distributions (AS Ma)

Starter

1. Use your calculator to find the mean and standard deviation of the data set: 28, 41, 18, 24, 37, 52, 33, 35.

Mean = 33.5Working: Standard deviation = 9.84 (3 s.f.)

E.g. 1 A tetrahedral die has the numbers 1, 2, 3 and 4 on its faces. The die is biased in such a way that the probability of the die landing on the number x is inversely proportional to x.

For example, $P(X = 3) = \frac{k}{3}$ where k is a constant.

- Write down the probability density function in terms of k. (a)
- Find the probability distribution for X, the number the die lands on after a single roll. (b)

Working:

 $P(X = x) = \frac{k}{x} \text{ where } x = 1,2,3,4$ The sum of the probabilities is 1 so $\frac{k}{1} + \frac{k}{2} + \frac{k}{3} + \frac{k}{4} = 1$ so $k = \frac{12}{25}$

x	1	2	3	4
P(X=x)	12	6	4	3
	25	25	25	25

- **E.g.** 2 Let X be the discrete variable 'the number of fours obtained when two dices are thrown'.
 - Find the probability distribution.
 - Show that X is random variable. (b)

 $P(X = 0) = \frac{5}{6} \times \frac{5}{6} = \frac{25}{36}$ $P(X = 1) = 2 \times \frac{5}{6} \times \frac{1}{6} = \frac{10}{36} = \frac{5}{18}$ $P(X = 2) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$ Working: Probability distribution

x: 0 1 2 P(X = x): $\frac{25}{36}$ $\frac{10}{36}$ $\frac{1}{36}$

(b) $\frac{25}{36} + \frac{10}{36} + \frac{1}{36} = 1$ so *X* is a random variable

Video: Probability distribution tables

Solutions to Starter, E.g.s and Exercise

www.mathspanda.com

Exercise

Answers can be found via the blue link above.

1. A discrete random variable X has the following probability distribution:

x: 1 2 3 4 P(X=x): $\frac{1}{3}$ $\frac{1}{3}$ k $\frac{1}{4}$ where k is a constant

- (a) Find the value of k.
- (b) Find $P(X \le 3)$.
- 2. The probability density function of a discrete random variable is given by P(X = x) = kx for x = 12, 13, 14. Find the value of the constant k.
- 3. The pdf of a discrete random variable Y is given by $P(Y = y) = cy^2$ for y = 0, 1, 2, 3, 4. Given that c is a constant find its value.
- 4. Two tetrahedral dice, each with faces labelled 1, 2, 3 and 4 are thrown and the score noted, where the score is the sum of the two numbers. If X is the random variable 'the score when two tetrahedral dice are thrown:
 - (a) Find the probability distribution of X.
 - (b) Find the probability density function of X.
- 5. A drawer contains 8 brown and 4 blue socks. A sock is taken from the drawer at random, its colour is noted and it is then replaced. The procedure is done three times. If X is the random variable 'the number of brown socks taken', find the probability distribution for X.

Answers to exercise

1. (a)
$$k = \frac{1}{12}$$
 (b) $\frac{3}{4}$

2.
$$k = \frac{1}{39}$$

3. (a)
$$x: 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$$

$$P(X=x): \frac{1}{16} \quad \frac{2}{16} \quad \frac{3}{16} \quad \frac{4}{16} \quad \frac{3}{16} \quad \frac{2}{16} \quad \frac{1}{16}$$

(b)
$$P(X = x) = \frac{x - 1}{9 - x}$$
 for $x = 2, 3, 4, 5$
 $P(X = x) = \frac{9 - x}{16}$ for $x = 6, 7, 8$

5.
$$x: 0 1 2 3$$

 $P(X = x): \frac{1}{27} \frac{6}{27} \frac{12}{27} \frac{8}{27}$