L6 Ma January Exam Teacher Y 23-24 SOLUTIONS [51]

1.

(a)	Shape in quadrant 1 or 3	M1
	Shape and Position	A1
		(2)
(b)	Deduces that $x < 0$	B1
	Attempts $\frac{16}{x}$ $2 \Rightarrow x$ $\pm \frac{16}{2}$	M1
	$x < 0 \text{ or } x \geqslant 8$	A1 cso
		(3)

۷.		
(a)	$x^2 + y^2 - 6x + 10y + k = 0$	
	$(x-3)^2 + (y+5)^2 \pm =$	M1
	Centre (3,-5)	A1
		(2)
(b)	Deduces that $k = 9$ is a critical point	B1ft
	Recognises that radius > 0 "9"+"25"- $k > 0$	M1
	9 < k < 34	A1
		(3)

•	

(a)	$\left(2 + \frac{1}{3}k\alpha\right)^6 = 2^6 + {}^6C_1 2^5 \left(\frac{1}{3}k\alpha\right) + {}^6C_2 2^4 \left(\frac{1}{3}k\alpha\right)^2 + \dots$	M1	1.1a	Attempt at least 2 of these terms – products of binomial coefficients and correct powers of 2 and $\frac{1}{3}kx$	Using kx rather than ½kx mark as MR -2
	64 + 64kx	A1	1.1		
	$+\frac{80}{3}k^2x^2$	A1	1.1		
		[3]			
(b)	$(3-4x)(64+64kx+\frac{80}{3}k^2x^2+)$ =192++(80k ² -256k)x ²	M1*	3.1a	Using two terms from the expansion in (a) to find the coefficient of x^2	
	$5k^2 - 16k - 12 = 0 \Longrightarrow k = \dots$	M1dep*	2.1	Forming a 3TQ in k	Using 3× their constant term from (a)
	$k = \frac{8+2\sqrt{31}}{5}$	A1	2.2a	BC must be positive root only	
		[3]			

(a)	Angle $ACB = 33^{\circ}$			
	Attempts $\left\{ AB^2 = \right\} 8.2^2 + 15.6^2 - 2 \times 8.2 \times 15.6 \cos 33^\circ$			
	Distance = awrt 9.8 {km}	A1		
		(3)		
(b)	 Explains that the road is not likely to be straight {and therefore the distance will be greater}. Explains that there are likely to be objects in the way {that they must go around and therefore the distance travelled will be greater}. The {bases of the} masts are not likely to lie in the same {horizontal} plane {and so the distance will be greater}. 	В1		

5.

(a)	Attempts both $y = 8 - 10 \times 1 + 6 \times 1^2 - 1^3$ and $y = 1^2 - 12 \times 1 + 14$		
	Achieves $y = 3$ for both equations and gives a minimal conclusion / statement, e.g., $(1,3)$ lies on both curves so they intersect at $x = 1$	A1	
		(2)	
(b)	(Curves intersect when) $x^2 - 12x + 14 = 8 - 10x + 6x^2 - x^3$ $\Rightarrow x^3 - 5x^2 - 2x + 6 = 0$	M1	
	For the key step in dividing by $(x-1)$ $x^3 - 5x^2 - 2x + 6 = (x-1)(x^2 + px \pm 6)$	dM1	
	$x^{3}-5x^{2}-2x+6=(x-1)(x^{2}-4x-6)$	A1	
	Solves $x^{2} - 4x - 6 = 0$ $(x-2)^{2} = 10 \Rightarrow x = \dots$	ddM1	
	$x = 2 - \sqrt{10} \text{ only}$	A1	
		(5)	

<u>u.</u>				<u> </u>
(a)	States correct coordinate Condone no brackets	1.1b	B1	(a-2, 2b)
(b)	States correct coordinates Condone no brackets	1.1b	B1	(a, 8b)
(c)	States correct scale factor	1.1b	B1	1 3

<u>7.</u>

Complete method to find the RHS of an equation for l e.g., Attempts gradient = $\frac{80-60}{10}$ {=2} and uses intercept = 60	M1
$\{y=\} 2x + 60$	A1
Deduces the RHS of the equation for C is $\{y = \}ax(x-6)$ and attempts to use $(10,80)$ to find the value of a	M1
Equation of C is $\{y = \}2x(x-6)$	A1
$2x(x-6) \leqslant y \leqslant 2x+60$	B1ft

N.B. Inequalities could be given separately.

Deduces that the gradient of line l_2 is $-\frac{5}{3}$ Complete attempt to find the equation of line l_2		
5x + 3y = 40 *	A1*	
	(3)	
Deduces $A(-10,0)$	B1	
Attempts to solve $y = \frac{3}{5}x + 6$ and $5x + 3y = 40$ simultaneously to	M1	
find the y coordinate of their point of intersection		
y coordinate of C is $\frac{135}{17}$ o.e.	A1	
Complete attempt at area $ABC = \frac{1}{2} \times (8 + "10") \times "\frac{135}{17}"$	dM1	
$=\frac{1215}{17}$	A1	
	Complete attempt to find the equation of line l_2 e.g., $y-0=-\frac{1}{"m_1"}(x-8)$ $5x+3y=40 *$ Deduces $A(-10,0)$ Attempts to solve $y=\frac{3}{5}x+6$ and $5x+3y=40$ simultaneously to find the y coordinate of their point of intersection y coordinate of C is $\frac{135}{17}$ o.e.	

(a)(i)	Obtains (3,17)			(3,17)
	Condone position vectors, missing brackets or x = 3 and $y = 17$	1.1b	B1	
(a)(ii)	Obtains gradient of PQ PI correct gradient used in equation of perpendicular bisector.	1.1b	B1	$m_{PQ} = \frac{19 - 15}{126} = \frac{4}{18}$
	Forms an equation of a line Either using the negative reciprocal of their gradient or their midpoint	3.1a	M1	$y-17 = -\frac{9}{2}(x-3)$ $2y-34 = -9x+27$ $9x+2y=61$
	Forms an equation of a line using the negative reciprocal of their gradient and their midpoint	1.1a	M1	3x + 2y = 01
	Obtains $9x + 2y = 61$ OE in the required form.	2.1	A1	
	OE in the required form.			
(b)(i)	Solves simultaneously using their $9x + 2y = 61$ from (a)(ii) with $2x - 5y = -30$ to obtain the centre of the circle PI by $(5,8)$ or $x = 5$, $y = 8$	3.1a	M1	Centre $(5,8)$ $(x-5)^2 + (y-8)^2 = r^2$ $(12-5)^2 + (19-8)^2 = 170$ $(x-5)^2 + (y-8)^2 = 170$
	Uses P or Q and their centre to find the radius or radius ²	3.1a	M1	(x-5) + (y-8) = 1/0
	Obtains $(x-5)^2 + (y-8)^2 = 170$	1.1b	A1	
	ACF Eg $x^2 - 10x + y^2 - 16y = 81$			
)(b)(ii)	States 4 Must have the correct centre	2.2a	R1	4

and correct radius or radius²