Disguised Quadratics using Logs

Starter

- 1. (Review of last lesson) Solve: (a) $5^x = 2^{2x+1}$ (b) $8 \times 5^{x-3} = 7 \times 9^x$ Give your answers exactly (i.e. in terms of logarithms).
- 2. Solve $5^{2x} 12(5^x) + 20 = 0$ giving your answers to 3 s.f. *Hint:* Let $u = 5^x$.

Notes

Disguised quadratic questions can involve logarithms as well.

E.g. 1 Solve $3^{2x} - 15(3^x) + 44 = 0$ giving your answers to 3 s.f.

Working: Let
$$u = 3^x$$
 \Rightarrow $u^2 - 15u + 44 = 0$ $(u - 11)(u - 4) = 0$
 $u = 11$ or $u = 4$
 $3^x = 11$ or $3^x = 4$

Take logs of both sides: $\log 3^x = \log 11$ or $\log 3^x = \log 4$

3rd law: $x \log 3 = \log 11$ or $x \log 3 = \log 4$

Exact answers: $x = \frac{\log 11}{\log 3}$ or $x = \frac{\log 4}{\log 3}$

To 3 s.f.: $x = 1.26$ or $x = 2.18$

When one of the terms include a power with addition (or subtraction) in it, that term needs to be broken down.

E.g.
$$5^{x+2} = 5^x \times 5^2 = 25 \times 5^x$$

E.g. 2 Solve $3^{2x} + 3^{x+1} - 10 = 0$ giving your answers to 3 s.f.

E.g. 3 Solve $7^{2x} + 12 = 7^{x+1}$ giving your answers to 3 s.f.

Video: Disguised quadratics involving exponentials

Solutions to Starter and E.g.s

Exercise

p120 7D Qu 1ia-d, 2-6