Topic Y1 Polynomials and graphs (Post-TT) [41] MARKSCHEME

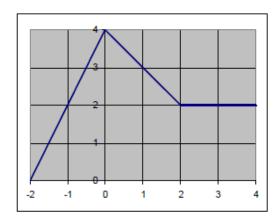
1.

Sets $f(-2) = 0 \Rightarrow 2 \times (-2)^3 - 5 \times (-2)^2 + a \times -2 + a = 0$	M1	3.1a
Solves linear equation $2a-a=-36 \Rightarrow a=$	dM1	1.1b
$\Rightarrow a = -36$	A1	1.1b
	/2	

(3 marks)

2.

(i)



- For x < 0, straight line joining (-2, 0) and (0, 4)
- B1 2 For x > 0, line joining (0,4) to (2, 2) and horizontal line joining (2,2) and (4,2)

(ii) Translation
1 unit right parallel to x axis

B1 2 Al

4

- Allow: 1 unit right,
- 1 along the x axis,
- 1 in x direction,

allow vector notation e.g. $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

1 unit horizontally

3.

(i)
$$(x^2-4x+4)(x+1)$$

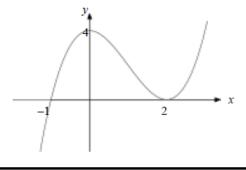
 $=x^3-3x^2+4$

M1

Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3 term)

- Al
- Expansion with at most 1 incorrect term
- Al 3 Co
 - Correct, simplified answer

(ii)



- Bl
- +ve cubic with 2 or 3 roots
- Bl
- Intercept of curve labelled (0, 4) or indicated on y-axis
- Bl
- 3 (-1, 0) and turning point at (2, 0) labelled or indicated on x-axis and no other x intercepts
- 6

Method 1 (Long division)		
Clear correct division method at beginning	M1	x2 in quot, mult back & attempt subtraction
		[At subtraction stage, cf (x^4) = 0]
Correct method up to & including x term in quot	M1	[At subtraction stage, cf (x^3) = 0]
Method 2 (Identity)		
Writing $(x^2 + 2x - 1)(x^2 + bx + 2) + cx + 7$	M1	Probably equated to $x^4 - 2x^3 - 7x^2 + 7x +$
Attempt to compare cfs of x^3 or x^2 or x or const	M1	
Then:		
b = -4	A1	
c = -1	A1	

5.				
(i)	(x-3)(x+4) = 0 x = 3 or $x = -4$	M1 A1 B1 B1 B1	Correct method to find roots Correct roots Negative quadratic curve y intercept (0, 12) Good curve, with correct roots 3 and -4 indicated and max point in 2 nd quadrant	i.e. max at (0, 12) B0 Curve must go below <i>x</i> -axis for final mark
(ii)	-4< <i>x</i> <3	[5] M1 A1	Correct method to solve quadratic inequality Allow ≤ for the method mark but not the accuracy mark	their lower root $< x <$ their higher root Allow " $x > -4$, $x < 3$ " Allow " $x > -4$ and $x < 3$ " Do not allow " $x > -4$ or $x < 3$ "
(iii)	$y = 4 - 3x$ $12 - x - x^{2} = 4 - 3x$ $x^{2} - 2x - 8 = 0$ $(x - 4)(x + 2) = 0$	M1 A1 M1	substitute for x/y or attempt to get an equation in 1 variable only obtain correct 3 term quadratic correct method to solve 3 term quadratic	e.g. for first mark $3x + 12 - x - x^2 = 4$, or $y = 12 - \left(\frac{4 - y}{3}\right) - \left(\frac{4 - y}{3}\right)^2$ (this leads to $y^2 - 2y - 80 = 0$). Condone poor algebra for this mark.
	(x-4)(x+2) = 0 $x = 4 or x = -2$ $y = -8 or y = 10$	A1 A1 [5]	correct method to solve 3 term quadratic	SC If A0 A0, give B1 for one correct pair of values spotted or from correct factorisation www

о.				
(i)	f(2) = 8 + 2a - 6 + 2b = 0 g(2) = 24 + 4 + 10a + 4b = 0	M1	Attempt at least one of f(2), g(2)	Allow for substituting $x = 2$ into either equation – no need to simplify at this stage. Division – complete attempt to divide by $(x - 2)$. Coeff matching - attempt all 3 coeffs of quadratic factor.
		M1	Equate at least one of f(2) and g(2) to 0	Just need to equate their substitution attempt to 0 (but just writing eg f(2) = 0 is not enough). It could be implied by later working, even after attempt to solve equations. Division - equating their remainder to 0. Coeff matching – equate constant terms.
	2a + 2b = -2, $5a + 2b = -14$	A1	Obtain two correct equations in a and b	Could be unsimplified equations. Could be $8a + 2b = -26$ (from $f(2) = g(2)$).
	hence $3a = -12$	M1	Attempt to find <i>a</i> (or <i>b</i>) from two simultaneous eqns	Equations must come from attempts at two of $f(2) = 0$, $g(2) = 0$, $f(2) = g(2)$. M1 is awarded for eliminating a or b from 2 sim eqns – allow sign slips only. Most will attempt a first, but they can also gain M1 for finding b from their simultaneous equations.
	so <i>a</i> = -4 AG	A1	Obtain $a = -4$, with necessary working shown	If finding b first, then must show at least one line of working to find a (unless earlier shown explicitly eg $a = -1 - b$).
	b = 3	A1	Obtain $b = 3$	Correct working only
		[6]		SR Assuming $a = -4$ Either use this scheme, or the original, but don't mix elements from both M1 Attempt either f(2) or g(2) M1 Equate f(2) or g(2) to 0 (also allow f(2) = g(2)) A1 Obtain $b = 3$ A1 Use second equation to confirm $a = -4$, $b = 3$
(ii)	$f(x) = (x-2)(x^2+2x-3)$ = (x-2)(x+3)(x-1)	M1	Attempt full division of their $f(x)$ by $(x-2)$ Could also be for full division attempt by $(x-1)$ or $(x+3)$ if identified as factors	Must be using $f(x) = x^2 - 7x + k$. Must be complete method – ie all 3 terms attempted. Long division – must subtract lower line (allow one slip). Inspection – expansion must give at least three correct terms of their cubic. Coefficient matching – must be valid attempt at all 3 quadratic coeffs, considering all relevant terms each time. Factor theorem – must be finding 2 more factors / roots.
		A1	Obtain x^2 and at least one other correct term, from correct $f(x)$	Could be middle or final term depending on method. Coeff matching – allow for stating values eg $A = 1$ etc. Factor theorem – state factors of $(x + 3)$ and $(x - 1)$.
		A1	Obtain $(x-2)(x+3)(x-1)$	Must be seen as a product of three linear factors. Answer only gains all 3 marks.
	$g(x) = (x-2)(3x^2 + 7x - 6)$ $= (x-2)(x+3)(3x-2)$ OR $g(1) = -4, \ g(-3) = 0$	M1	Attempt to verify two common factors	Possible methods are: Factorise $g(x)$ completely $-f(x)$ must have been factorised. Find quadratic factor of $g(x)$ and identify $x = -3$ as root. Test their roots of $f(x)$ in $g(x)$. Just stating eg $g(-3) = 0$ is not enough $-$ working required. If $f(x)$ hasn't been factorised, allow M1 for using factor
				thm on both functions to find common factor, or for factorising $g(x)$ and testing roots in $f(x)$.
	Hence common factor of $(x + 3)$	A1	Identify $(x + 3)$ as a common factor	Just need to identify $(x + 3)$ - no need to see $(x - 2)$ or to explicitly state 'two common factors'. Need to see $(x + 3)$ as factor of $g(x)$ – just showing $g(-3) = 0$ and then stating 'common factor' is not enough. CWO (inc A0 for $g(x) = (x - 2)(x + 3)(x - \frac{2}{3})$). If using factor thm, no need to find $g(1)$ if $g(-3)$ done first. Just stating $(x + 3)$ with no supporting evidence is M0A0. A0 if referring to -3 (and 2) as 'factors'. A0 if additional incorrect factor given.
		[5]		