Combining Forces

Starter

1. (Review of last lesson)

A force of 12 N acts on a particle of mass 60 kg causing the velocity of the particle to increase from 3 m/s to 7 m/s. Find the distance that the particle travels during this period.

Working: F = ma: 12 = 60a a = 0.2 u = 3, v = 7, a = 0.2, s = ?No $t \Rightarrow v^2 = u^2 + 2as$: $7^2 = 3^2 + 2 \times 0.2 \times s$ s = 100

The particle travels 100 m during this period

- 2. (Review of last lesson) A particle of mass 10 kg is acted on by a force of $(8\mathbf{i} 2\mathbf{j}) \text{ N}$. (a) Find the acceleration of the particle in vector form.
 - (b) Find the magnitude of the acceleration.
 - (c) Assuming that the particle is initially at rest, find the speed of the particle after 6 seconds.

Working: (a)
$$\mathbf{F} = m\mathbf{a}$$
: $8\mathbf{i} - 2\mathbf{j} = 10\mathbf{a}$
 $\mathbf{a} = 0.8\mathbf{i} - 0.2\mathbf{j}$

The acceleration of the particle is (0.8i - 0.2j) m/s².

(b)
$$|\mathbf{a}| = |0.8\mathbf{i} - 0.2\mathbf{j}| = \sqrt{0.8^2 + (-0.2)^2} = 0.825$$

The magnitude of the acceleration is 0.825 m/s^2

(c)
$$u = 0, a = 0.825, t = 6, v = ?$$

No $s \Rightarrow v = u + at$: $v = 0 + 0.825 \times 6$
 $v = 4.95$
The speed of the particle after 6 seconds is 4.95 m/s

E.g. **1** An object, being pulled by a 12 N force, experiences a frictional force of 5 N in the opposite direction. What is the resultant force?

Working: Resultant force = 12 - 5 = 7 N

E.g. 2 Two forces, given by the vectors $(3\mathbf{i} - \mathbf{j})$ N and $(-2\mathbf{i} + 4\mathbf{j})$ N, act on an object. Calculate the resultant force.

Working: Resultant force = $(3\mathbf{i} - \mathbf{j}) + (-2\mathbf{i} + 4\mathbf{j}) = (\mathbf{i} + 3\mathbf{j}) \mathbf{N}$

www.mathspanda.com

E.g. 3 A force of 6 N acting west and 10 N acting north acts on a body. Find

- (a) the magnitude of the resultant force and
- (b) the direction of the resultant force.

Hint: draw a diagram with vectors nose to tail.

Working: (a) Magnitude =
$$\sqrt{6^2 + 10^2} \approx 11.7 \text{ N}$$

(b) The force acts in the second quadrant.
Direction = $180^\circ - \tan^{-1}\left(\frac{10}{6}\right)$
= 121.0° (4 s.f.)

- **E.g. 4** Find the resultant of the two force (8i + 5j) N and (3i 2j) N:
 - (a) in component form and
 - (b) giving the magnitude and direction of the force.

Working: (a) Resultant force =
$$(8i + 5j) + (3i - 2j) = (11i + 3j)$$
 N

(b) Magnitude =
$$\sqrt{11^2 + 3^2} \approx 11.4$$
 N
The force acts in the first quadrant
Direction = $\tan^{-1}\left(\frac{3}{11}\right) = 15.3^{\circ}$

Video: Force diagrams

Solutions to Starter and E.g.s

Exercise p486 21B Qu 1i, 2i, 3i, 4i, 5i, 6i, 7-9

Page 2 of 2