Disguised Quadratics using Logs

Starter

- 1. (Review of last lesson) Solve: (a) $5^x = 2^{2x+1}$ (b) $8 \times 5^{x-3} = 7 \times 9^x$ Give your answers exactly (i.e. in terms of logarithms).
 - Working: (a) Take logs of both sides: $\log 5^x = \log 2^{2x+1}$ 3rd law of logs: $x \log 5 = (2x+1)\log 2$ Expand the brackets: $x \log 5 = 2x \log 2 + \log 2$ Collect like terms: $x \log 5 x \log 4 = \log 2$ Factorise: $x(\log 5 \log 4) = \log 2$ $x = \frac{\log 2}{\log 5 \log 4} = \frac{\log 2}{\log \frac{5}{4}}$ N.B. x = 3.11
 - (b) Take logs of both sides: $\log(8 \times 5^{x-3}) = \log(7 \times 9^x)$ 1st law of logs: $\log 8 + \log 5^{x-3} = \log 7 + \log 9^x$ 3rd law of logs: $\log 8 + (x-3)\log 5 = \log 7 + x\log 9$ Expand: $\log 8 + x\log 5 3\log 5 = \log 7 + x\log 9$ Collect like terms: $x\log 5 x\log 9 = \log 7 + 3\log 5 \log 8$ Factorise: $x(\log 5 \log 9) = \log 7 + 3\log 5 \log 8$ Exact answer: $x = \frac{\log 7 + 3\log 5 \log 8}{\log 5 \log 9} = \frac{\log \frac{875}{8}}{\log \frac{5}{2}}$
 - $N.B. \quad x = -7.99$
- 2. Solve $5^{2x} 12(5^x) + 20 = 0$ giving your answers to 3 s.f. *Hint:* Let $u = 5^x$.

Working: Let
$$u = 5^x$$
 \Rightarrow $u^2 - 12u + 20 = 0$ $(u - 10)(u - 2) = 0$
 $u = 10$ or $u = 2$
 $5^x = 10$ or $5^x = 2$

Take logs of both sides: $\log 5^x = \log 10$ or $\log 5^x = \log 2$
 3rd law : $x \log 5 = \log 10$ or $x \log 5 = \log 2$

Exact answers: $x = \frac{\log 10}{\log 5}$ or $x = \frac{\log 2}{\log 5}$

To 3 s.f.: $x = 1.43$ or $x = 0.431$

E.g. 1 Solve $3^{2x} - 15(3^x) + 44 = 0$ giving your answers to 3 s.f.

Working: Let
$$u = 3^x$$
 \Rightarrow $u^2 - 15u + 44 = 0$ $(u - 11)(u - 4) = 0$
 $u = 11$ or $u = 4$
 $3^x = 11$ or $3^x = 4$

Take logs of both sides: $\log 3^x = \log 11$ or $\log 3^x = \log 4$

By a sum of the proof of

www.mathspanda.com

E.g. 2 Solve $3^{2x} + 3^{x+1} - 10 = 0$ giving your answers to 3 s.f.

Working:
$$3^{2x} + 3^{x+1} - 10 = 0$$

Let $u = 3^x$ \Rightarrow $3^{2x} + 3 \times 3^x - 10 = 0$
 $u^2 + 3u - 10 = 0$
 $(u - 2)(u + 5) = 0$
 $u = 2$ or $u = -5$
 $3^x = 2$ or $3^x = -5$
Take logs of both sides: $\log 3^x = \log 2$ or No solution $x \log 3 = \log 2$
Exact answers: $x = \frac{\log 2}{\log 3}$
To 3 s.f.: $x = 0.631$

Remember For $\log x$ to exist x > 0

E.g. 2 Solve $3^{2x} + 3^{x+1} - 10 = 0$ giving your answers to 3 s.f.

Working:
$$3^{2x} + 3^{x+1} - 10 = 0$$
 $\Rightarrow 3^{2x} + 3 \times 3^x - 10 = 0$ Let $u = 3^x$ $\Rightarrow u^2 + 3u - 10 = 0$ $(u - 2)(u + 5) = 0$ $u = 2$ or $u = -5$ $3^x = 2$ or $3^x = -5$ Take logs of both sides: $\log 3^x = \log 2$ or No solution 3rd law: $x \log 3 = \log 2$ Exact answers: $x = \frac{\log 2}{\log 3}$ To 3 s.f.: $x = 0.631$

Remember For $\log x$ to exist x > 0

E.g. 3 Solve $7^{2x} + 12 = 7^{x+1}$ giving your answers to 3 s.f.

Working:
$$7^{2x} + 12 = 7^{x+1} \Rightarrow 7^{2x} - 7 \times 7^x + 12 = 0$$
Let $u = 7^x \Rightarrow u^2 - 7u + 12 = 0$
 $(u - 4)(u - 3) = 0$
 $u = 4 \Rightarrow 0$
Take logs of both sides: $\log 7^x = 4 \Rightarrow 0$
 $x \log 7 = \log 4 \Rightarrow 0$
Exact answers: $x = \frac{\log 4}{\log 7} \Rightarrow 0$
 $x = \frac{\log 3}{\log 7}$
To 3 s.f.: $x = 0.712 \Rightarrow 0$

Video: <u>Disguised quadratics involving exponentials</u>

Solutions to Starter and E.g.s

Exercise

p120 7D Qu 1ia-d, 2-6