Tree Diagrams

Starter

1. (Review of last lesson) Erik has a takeaway twice a week. The probability he has an Indian is 0.3, the probability he has Chinese is 0.5 and the probability he has a Thai meal is 0.2. Find the probability that he has the same type of meal on each day one week.

Working: P(Indian, Indian) = P(Indian)
$$\times$$
 P(Indian) = $0.3 \times 0.3 = 0.3^2 = 0.09$ P(same type of meal) = $0.3^2 + 0.5^2 + 0.2^2 = 0.38$

- 2. While driving to work, Sarah passes through 2 sets of traffic lights. The probability the 1st is green is 0.4 and the probability the second is green is 0.3.
 - (a) Copy and complete the tree diagram.

N.B. G' means "not green"

- (b) Find:
 - (i) P(1st set is green but 2nd set is not green),
 - (ii) P(only one set of traffic lights is green),
 - (iii) P(at least one set of traffic lights is green)

(b)
$$P(G, G') = 0.4 \times 0.7 = 0.28$$

(c)
$$P(G, G') + P(G', G) = 0.4 \times 0.7 + 0.6 \times 0.3$$

= $0.28 + 0.18 = 0.46$

(d) Use answer to (c)
$$P(\text{at least 1 green}) = P(\text{1 green}) + P(\text{2 greens}) = 0.46 + 0.4 \times 0.3 = 0.46 + 0.12 = 0.58$$

www.mathspanda.com

Alternatively:
$$P(\text{at least 1 green}) = 1 - P(\text{no greens})$$

= $1 - 0.6 \times 0.7$
= 0.58

- **N.B.** "One green light" means G, G' or G', G THIS IS IMPORTANT
- *E.g.* 1 A bag has 9 discs 4 red and 5 blue. A disc is chosen at random from the bag and the colour is noted. The disc is then replaced before another disc is chosen.
 - (a) Draw a tree diagram to represent the above...
 - (b) Use your tree diagram to find:
 - (i) P(R, R)
 - (ii) P(only 1 red disc)
 - (iii) P(at least 1 red disc)

N.B. 4/9 means
$$\frac{4}{9}$$

(b)
$$P(R,R) = P(R) \times P(R) = \frac{4}{9} \times \frac{4}{9} = \frac{16}{81}$$

(c) Only 1 red disc means R, B or B, R
$$P(1 \text{ red disc}) = P(R, B) + P(B, R)$$

$$= \frac{4}{9} \times \frac{5}{9} + \frac{5}{9} \times \frac{4}{9} = \frac{40}{81}$$

(d) There are two ways to do this:

1. P(at least 1 red disc) = 1 - P(no red discs)
=
$$1 - P(B, B)$$

= $1 - \frac{5}{9} \times \frac{5}{9}$
= $\frac{56}{81}$
2. P(at least 1 red disc) = P(1 red disc) + P(2 red)

2. P(at least 1 red disc) = P(1 red disc) + P(2 red discs)
=
$$\frac{40}{81} + \frac{4}{9} \times \frac{4}{9}$$

= $\frac{56}{81}$

Video: Tree diagrams

www.mathspanda.com

Solutions to Starter and E.g.s

Exercise

9-1 class textbook: p253 M8.10 Qu 2-12 (even) A*-G class textbook: p216 M8.7 Qu 2-12 (even)

9-1 homework book: p87 M8.7 Qu 1-5

A*-G homework book: p62 M8.7 Qu 1-5 (qu 3 - draw a tree diagram)

Homework book answers (only available during a lockdown)