Trigonometry in 3-D

Starter

- (Review of Y9 material) Find the missing side or angle in these right angle triangles: 1.
 - We do not use the sine or cosine rule in right-angle triangles

(a)

(b)

(c)

(d)

Notes

When using Pythagoras and trigonometry in 3-D, always draw the 2-D triangle you are working on.

N.B. Draw the line you are asked to find and draw a right-angled triangle around it.

E.g. 1 In the cuboid ABCDEFGH, AB = 9, BF = 4, FG = 7. Find the length of:

AG

ΑF (a)

(b)

D

Working:

By Pythagoras: (a)

(b)

 $7^2 + AF^2 = AG^2$ By Pythagoras: Replace AF^2 by 97 rather than replacing \widehat{AF} by 9.85 to avoid rounding error.

$$AG^2 = 146$$

$$AG = 12.1 \text{ cm}$$

www.mathspanda.com

E.g. 2 A cube has sides of length 3 cm. Find:

- the exact value of AF
- the exact value of DF (b)
- (c) the angle DFA.

E.g. 3 A square-based pyramid has base ABCD where AB = 4 m. The point M is the midpoint of the square, which is vertically below the vertex, V. Given that AV = 7 m, find:

- the exact length of AC
- the exact vertical height of the (b) pyramid (i.e. MV)
- the $\angle AVB$ (c)

Distance between 2 points in 3-D

In 2-D, to find the distance between two points (x_1, y_1) and (x_2, y_2) we use Pythagoras. The formula is:

Distance in 2-D =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

In 3-D, we can extend Pythagoras to the points
$$(x_1, y_1, z_1)$$
 and (x_2, y_2, z_2) : Distance in 3-D = $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$

E.g. 4 Find the distance between:

(1,4) and (13,9)(a)

(1, 3, 4) and (2, 8, 7)(b)

Working:

(a)

Label the points:
$$(1,4)$$
 and $(13,9)$ (x_1,y_1) (x_2,y_2)

Distance in 2-D = $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$

= $\sqrt{(13-1)^2+(9-4)^2}$

= $\sqrt{12^2+5^2}$

= 13 units

Video: Trigonometry in 3-D

Solutions to Starter and E.g.s

Exercise

9-1 class textbook: p587 E18.5 Qu 1-10 A*-G class textbook: p546 E18.4 Qu 1-10 9-1 homework book: p199 E18.5 Qu 1-6 A*-G homework book: p152 E18.4 Qu 1-5

www.mathspanda.com

Summary

When using Pythagoras and trigonometry in 3-D, *always draw the 2-D triangle*. Distance between 2

Distance in 2-D =
$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

Distance in 3-D = $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$

Homework book answers (only available during a lockdown)