Revision F5 (All topics) B [45] MARKSCHEME

1.

(i) 70 B1 (opposite angles of) cyclic quadrilateral B1

140 B1 (ii) f.t .their (i)

angle at centre is twice angle at circumference B1

[4]

B1

2.

$$(3x \pm a)(x \pm b)$$
 $ab = \pm 2$ M1
 $(3x - 2)(x + 1)$ A1
 $(3x + 2)(3x - 2)$ B1

$$\frac{x+1}{3x+2}$$
 A1

ft if Ml awarded, but only if a valid factor cancelled Further work such as cancelling x's do not award last mark

[4]

3.

(a) Parallel curve translated up y axis

B1 '2' need not be marked, needs to look

symmetrical

Parallel curve translated in positive direction along x axis (b)

B1

Must 'sit on' x axis and look symmetrical

4.

$6c(c^2+5)$ or $3(c^2+5)$	M1	
$\frac{6c(c^2+5)}{3(c^2+5)}$	M1	This mark implies first M1
2c and multiple of 2 so even	A1	oe statement Must see method

5.

J.			
(a)	x, x + 1, x + 2, x + 3	1	accept correct alternatives
	x + (x + 1) + (x + 2) + (x + 3) or $4x + 6$	1	
	2(x+3)	1	
		3 AO2.4b	
(b)	e.g. 1 + 2 + 3 + 4	1	
	4x + 6 is not a multiple of 4	1	Allow e.g. 1 + 2 + 3 + 4 = 10 is not a
		2 AO2.4a	multiple of 4

6.

- (a) 9
- (b) Plot points Bl ft

Tolerance $\pm \frac{1}{2}$ square

Smooth curve Bl ft

 $Tolerance \pm \pm \frac{1}{2} square$

Must not cross x axis

(c)
$$(3x^2 - 2x + 1) - (3x^2 - 6x + 2)$$
 M1
 $Accept \pm 4x \pm 1 \text{ for } M1$

=4x-1

Draw y = 4x - 1 Bl ft

x = 0.42, 1.58 A1

Accept 0.35 to 0.5, 1.5 to 1.65 [inclusive]
Delete 1 mark for co-ordinates

[6]

(a)	chain of reasoning	for a relevant product eg $\frac{y}{y+5} \times \frac{5}{y+4}$
		for a correct equation eg $2 \times \left(\frac{y}{y+5} \times \frac{5}{y+4} \right) = \frac{6}{11}$
		C1 for method to eliminate fractions from algebraic
		expression C1 complete chain of reasoning
(b)	$\frac{3}{11}$	M1 method to solve equation eg $(ax + b)(cx + d)$ with $ac = 3$ and $bd = \pm 60$
		A1 for selecting $y = 6$ A1 3
		A1 for $\frac{3}{11}$ oe

8.

$$27^{-\frac{2}{3}} = \frac{1}{27^{\frac{2}{3}}} \text{ or } 3^{-2} \text{ or } \frac{1}{3^2}$$
 M1

 $\frac{1}{9}$ A1

[2]

9.

(a)	$8^{\frac{5}{15}} = 8^{\frac{1}{3}} = \sqrt[3]{8} = 2$	2 2 AO2.2	M1 for $8^{\frac{5}{15}}$ or $8^{\frac{1}{3}}$
(b)	$3^{\frac{1}{2}}$	1 AO2.2 1 AO3.1b	B2 for $3^{\frac{4}{8}}$ or equivalent fractional power Or M1 for 3^4 or $\left(3^3 \times 3\right)^{\frac{1}{8}}$ or $27^{\frac{1}{8}} \times 3^{\frac{1}{8}}$

10.

Multiply by $\frac{\sqrt{7}+2}{\sqrt{7}+2}$ Denominator becomes 3 Attempt to expand the numerator $3\sqrt{7}+6+4\sqrt{7}\sqrt{7}+8\sqrt{7}$ $\frac{34+11\sqrt{7}}{3}$

[M1] soi

[B1]

[M1] at least 2 terms correct

oe

[A1 for 34, A1 for $11\sqrt{7}$]

11.

<u></u>		
$x^2 + 6$ or $(x-3)^2$	M1	
$x^2 - 3x - 3x + 9$	M1	4 terms with 3 correct
6x < 3	M1dep	oe linear inequality dep on two quadratic expressions ft their quadratic expressions
x < 0.5	A1	oe