Circle Theorems

Starter

(Review of last lesson) 1.

- Find the equation of the tangent to the circle $x^2 + y^2 = 29$ at the point P(5, 2). (a)
- The tangent cuts the x-axis at the point Q. Find the coordinates at Q. (b)

Gradient of radius = $\frac{2-0}{5-0}$ = $\frac{2}{5}$ So gradient of tangent is $-\frac{5}{2}$ negative reciprocal Working: (a)

Substitute into
$$y - y_1 = m(x - x_1)$$
: $y - 2 = -\frac{5}{2}(x - 5)$

Multiply by 2: $2y - 4 = -5x + 25$

Equation of tangent is $5x + 2y = 29$

(b) At the x-axis y = 05x = 29 : x = 5.8Substitute into 5x + 2y = 29: The coordinates of Q are (5.8, 0)

E.g. 1 Find the marked angle, giving a reason for your answer:

(a)

- $a=27^{\rm O}$ because angles at the circumference from the same chord (a) Working: are equal. $b = 30^{\circ}$ because angles at the circumference from the same chord
 - $x = 92^{\circ}$ because the angle at the centre is twice the angle at the (b) circumference from the same chord. The triangle is isosceles so x + 2y = 180 \Rightarrow 92 + 2y = 180 2y = 88 \Rightarrow $y = 44^{\circ}$
 - The triangle is right-angled because the angle in semi-circle is 90° . (c) So $x = 180 - 90 - 72 = 18^{\circ}$

www.mathspanda.com

E.g. 2 Find the marked angle, giving a reason for your answer:

Working:

- $a = 40^{\circ}$ because angles at the circumference from the **same chord** (a) are equal $b = 180 - 85 - 40 = 55^{\circ}$ as angles in a triangle add up to 180° $c = b = 55^{\circ}$ because angles at the circumference from the *same* **chord** are equal
- $x = \frac{180 94}{2} = 43^{\circ}$ because it is a isosceles triangle (b) Since the \overline{t} triangle is isosceles, the other angle is also 43° . $y = 43^{\circ}$ because angles at the circumference from the same chord are equal
- The triangle is right-angled because the angle in semi-circle is 90° . (c) So $p + 3p + 90 = 180 \Rightarrow 4p = 90 \Rightarrow p = 22.5^{\circ}$ $\therefore 3p = 67.5^{\circ}$

Video: Circle theorems

Solutions to Starter and E.g.s

Exercise

p74 E3.1 Qu 1-26 odd 9-1 class textbook: A*-G class textbook: p67 E3.1 Qu 1-26 odd 9-1 homework book: p24 E3.1 Qu 1-14 A*-G homework book: p18 E3.1 Qu 1-12

Homework book answers (only available during a lockdown)