Bearings

Starter

1. (Review of last lesson) Find the marked angles:

(a)

(b)

Working: (a) There are several ways to do this question.

Angles on straight line add up to $180^{\rm o}$

$$y = 180 - 67 - 86 = 27^{\circ}$$

x and y are allied angles so

$$x = 180 - y$$

$$x = 180 - 27 = 153^{\circ}$$

(b) Angle a is corresponding to $64^{\rm o}$ so $a=64^{\rm o}$ Using alternate angles $c=50^{\rm o}$.

b = 180 - c angles on a straight line

- 2. The clockwise angle from North to East is 90° . Write down the clockwise angle between North and the following points on the compass:
 - (a)

(b)

(c) NE

(d) SE

W

- (e) NW
 - ٧W
- (f) WSW

Working:

- (a) 270°
- (b) 180°
- (c) 45°
- (d) 135°
- (e) 315°
- (f) $270 22.5 = 247.5^{\circ}$

- N.B. There is 90° between N and E. There is 45° between N and NE. There is 22.5° between N and NNE.
- *E.g.* 1 Which points on the compass are the same as these bearings:
 - (a) 000°
- (b) 225°
- (c) 337.5°

- Working:
- (a) N
- (b) SW
- (c) NNW

Geogebra: Bearings

www.mathspanda.com

E.g. 2 Write down the bearing of A from B.

(a)

(b)

(c)

Working:

(a)

127°

 $058^{\rm o}$ (b)

(c)

$$360 - 140 = 220^{\circ}$$

E.g. 3 For the diagrams of below, calculate the bearing of B from A.

Working:

"the bearing of B from A" — the "from A" means start from A. Therefore, a North arrow must be drawn from A.

By allied angles, the angle between the line AB and (a) A's North arrow is $180 - 127 = 53^{\circ}$. So bearing of *B* from *A* is $360 - 53 = 307^{\circ}$

(b) By allied angles, the angle between the line ABand A's North arrow is $180 - 58 = 122^{\circ}$. So bearing of *B* from *A* is $360 - 122 = 238^{\circ}$

www.mathspanda.com

E.g. 4 What is the bearing of *S* from *T*?

(a)

(c)

Working:

"the bearing of S from T" — the "from T" means start from T. N Therefore, a North arrow must be drawn *from* T.

By allied angles, the angle between the line STand T's North arrow is $180 - 75 = 105^{\circ}$. So the bearing of *S* from *T* is $360 - 105 = 255^{\circ}$

(b) By allied angles, the angle between the line STand *T*'s North arrow is $180 - 160 = 20^{\circ}$. So the bearing of *S* from *T* is $360 - 20 = 340^{\circ}$

The angle between the line ST and S's (c) North arrow is $360 - 290 = 70^{\circ}$. By allied angles, the bearing of S from T is $180 - 70 = 110^{\circ}$

E.g. 5 If the bearing of P from Q is 063° , what is the bearing of Q from P? Hint: draw a diagram.

Working:

By allied angles, the angle between the line PQ and *P*'s North arrow is $180 - 63 = 117^{\circ}$. So the bearing of O from P is $360 - 117 = 243^{\circ}$

Video: **Bearings** Video: **Back bearings**

Solutions to Starter and E.g.s

Exercise p198 Ex 11.3 Qu 1-10

Textbook answers (only available during a lockdown)